项目名称: 利用磁场矢量探测超冷费米气体中的p波相互作用

项目编号: No.91336106

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 江开军

作者单位: 中国科学院武汉物理与数学研究所

项目金额: 95万元

中文摘要: 超冷原子气体可以用来研究单一分波的相互作用,以精确地研究量子气体中的少体和多体问题。在各向同性的s波相互作用中已经观察到超流相变等重要的量子现象,而p波相互作用的各向异性使其拥有新奇而丰富的量子现象,所以需要发展新的实验方法来探测p波相互作用。通常,大家只利用磁场大小来操控原子相互作用,而在此项目中,我们将基于单自旋的超冷费米气体,利用磁场矢量来精确探测低维费米气体中的p波相互作用。在费米气体钾40的p波Feshbach共振附近,我们利用光晶格来控制原子运动的方向;利用磁场方向来控制原子磁偶极矩的取向;通过控制原子运动方向和磁场方向的夹角来研究p波散射的性质,并将实验结果和理论计算进行定量的比较。利用磁场矢量来调节原子相互作用是我们提出的一种新的操控原子的方法,通过此项目的实施,可以精确地探测p波相互作用各向异性的特性,为进一步研究各向异性相互作用中的新奇量子现象打下基础。

中文关键词: 玻色-爱因斯坦凝聚;蒸发冷却;p波相互作用;多频冷却;

英文摘要: Ultracold atomic gas can be used to study the single partial wave interaction, which will help us to explore accurately the few-body and many-body problems in quantum gases. Many significant quantum phenomema, such as superfluid phase transition, have been observed in s-wave interaction. However the p-wave interaction has a richness of exotic phenomina due to its anisotropy, and thus it is required to develop new methods to explore this interaction. Generally, people only use the magnitude of the magnetic field to manipulate the atomic interaction. While in this project, based on single-component Fermi gas, we will apply the magnetic field vector to accurately probe the p-wave interaction in a low dimensional Fermi gas. Near the p-wave Feshbach resonance of Fermi gas potassium40, we will confine the atomic motion with optical lattice; control the direction of the magnetic dipole moment using a magnetic field; study the dependence of p-wave scattering on the angle between the atomic motion and the direction of the magnetic field. Using magnetic field vector to manipulate atoms opens a new method in atomic manipulation. Through carrying on this project, we can accurately probe the anisotropic p-wave interaction in the experiment, which will pave the path to explore the exotic quantum phenomena in anisotropic inter

英文关键词: Bose-Einstein condensate;Evaporation cooling;p-wave interaction;Multiple-frequency cooling;

成为VIP会员查看完整内容
0

相关内容

对抗机器学习在网络入侵检测领域的应用
专知会员服务
34+阅读 · 2022年1月4日
图对抗防御研究进展
专知会员服务
39+阅读 · 2021年12月13日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
16+阅读 · 2021年11月18日
专知会员服务
24+阅读 · 2021年10月14日
专知会员服务
37+阅读 · 2021年5月29日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
【CIKM2020】学习表示解决可解释推荐系统
专知会员服务
48+阅读 · 2020年9月6日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月31日
Arxiv
12+阅读 · 2021年7月26日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
小贴士
相关VIP内容
对抗机器学习在网络入侵检测领域的应用
专知会员服务
34+阅读 · 2022年1月4日
图对抗防御研究进展
专知会员服务
39+阅读 · 2021年12月13日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
23+阅读 · 2021年12月6日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
16+阅读 · 2021年11月18日
专知会员服务
24+阅读 · 2021年10月14日
专知会员服务
37+阅读 · 2021年5月29日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
【CIKM2020】学习表示解决可解释推荐系统
专知会员服务
48+阅读 · 2020年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员