项目名称: 电化学微孔腐蚀抑制铝合金微波器件表面二次电子发射系数的研究

项目编号: No.51201128

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 金属材料学科

项目作者: 毛胜春

作者单位: 西安交通大学

项目金额: 25万元

中文摘要: 微波器件用铝合金表面二次电子倍增效应已经成为关系到卫星通讯应用和空间大功率设备成败的重要因素之一。本项目拟在不改变微波器件的结构和电路设计的基础上,通过电化学腐蚀对铝合金微波器件内表面处理形成可控的微孔分布,并采用航空部件镀银的方法在样品表面形成微陷阱结构,实现对二次电子发射系数的抑制。本项目从热力学和动力学方向探索铝合金体系中合金组分的互作用对电化学腐蚀的影响规律,研究不同腐蚀条件下腐蚀机理,实现铝合金电化学腐蚀对微陷阱结构的有效控制。探讨在强电场条件下,二次电子在不同微陷阱结构中的漫反射规律,建立微陷阱结构与二次电子发射系数的构效关系,为利用微陷阱结构抑制二次电子发射提供理论依据和应用基础。

中文关键词: 电化学腐蚀;铝合金;二次电子发射系数;微放电效应;第一性原理

英文摘要: The multipactor effect on the surface of aluminum alloy in microwave devices has been one of the key factors influencing the satellite communication and high power space devices. This project is to restrain the secondary electron emission coefficient, by forming controlled micro-pole dispersion on the inner surface of aluminum alloy devices through electrochemical corrosion and adopting the silver process used in aerial parts manufacturing to form micro traps on the surface, without changing the structure of the devices or the circuit design. In the project, the effect of composition on the porous corrosion will be studied on both the thermodynamic and kenetic sides, and the corrosion mechanism under different conditions will also be investigated so as to effectively control the micro-trap structure in aluminum alloy microwave devices. In addition, the diffuse reflection of secondary electrons in different micro-trap structures under strong electric field will be explored and the structure-activity relationship between the micro-traps and the secondary electron emission coefficients will be established accordingly. Therefore, the theory and application principle of restraining secondary electron emission by micro traps could be constructed.

英文关键词: Electrochemical Corrosion;Aluminum Alloy;Secondary Electron Emission Yield;Multipactor;First-principles

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
64+阅读 · 2021年12月29日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
38+阅读 · 2021年2月8日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
28+阅读 · 2020年8月8日
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
热烈祝贺机器视觉专委会委员董伟生教授荣获国家自然科学奖!
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
64+阅读 · 2021年12月29日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
38+阅读 · 2021年2月8日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员