项目名称: 大水深水下切割药芯割丝电弧冶金反应机理研究

项目编号: No.51305173

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 王俭辛

作者单位: 江苏科技大学

项目金额: 25万元

中文摘要: 药芯割丝水下电弧切割技术可实现自动化连续切割且无需额外提供气体,但药芯供氧效率不高、水下电弧不够稳定等问题制约了该技术在大水深场合的应用。本项目基于氧化-熔化切割原理提出以过氧化物作为药芯中氧化气体供给源的思想,研究其受热分解机理及其水解产物H2O2的分解供氧机理,探讨在高压条件下无铅多元组分催化H2O2分解的科学方法及协同作用机理,建立催化反应的动力学模型,为实现水下高活性、无毒害、环保催化打下理论基础。通过研究获得水下高压状态下碳酸盐分解反应的动力学规律,阐明造气剂分解的主控因素,探索造气剂持续分解从而达到最佳保护效果。借助高速摄像分析电弧形态随水压的变化情况,研究添加含Cs及Rb化合物作为稳弧剂时的冶金反应机理,探索改善大水深切割电弧燃烧稳定性的途径,在不同水压条件下得到稳定的切割效果,揭示割丝药芯中各成分之间的交互作用机理,为水下绿色切割技术的研究和发展提供理论指导。

中文关键词: 水下切割;药芯割丝;冶金反应;温度场;

英文摘要: Continuity of cutting performance and absence of additional gas supply into arc zone are important peculiarities of the underwater arc cutting technique with self-shielded flux-cored wire, and the components of flux-cored wire must contain strong oxidizer and arc stabilizer. Based on the principle of oxidation and fusion cutting, peroxide is used as the oxidizing gas supply source in flux-cored wire in this project, thermal decomposition mechanism of peroxide, and its hydrolysis product H2O2, is researched. The lead-free multi-component catalysts for H2O2 decomposition are explored, and the synergistic effect between the multi-component catalysts is studied for establishing the dynamic model of the catalytic reaction, which will provide theoretical basis for high activity, non-toxic, and environmentally friendly underwater catalytic reaction. In order to achieve the best shielding, thermal decomposition kinetics of carbonate is researched to obtain the main controlling factors of gas-forming component decomposition. The effect of water pressure on arc shape is analyzed by means of high speed camera. In order to improve the arc stability, compound containing Cs or Rb is used as the arc stabilizer, and the mathematical model will be established between the components of flux as well as their interactions and the a

英文关键词: Underwater cutting;Flux-cored wire;Metallurgical reaction;Temperature field;

成为VIP会员查看完整内容
0

相关内容

面向任务型的对话系统研究进展
专知会员服务
58+阅读 · 2021年11月17日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
38+阅读 · 2021年4月25日
专知会员服务
110+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
35+阅读 · 2020年11月26日
稳定性与高可用保障的工作思路
阿里技术
0+阅读 · 2022年2月24日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Risk-Averse Receding Horizon Motion Planning
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
面向任务型的对话系统研究进展
专知会员服务
58+阅读 · 2021年11月17日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
38+阅读 · 2021年4月25日
专知会员服务
110+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
35+阅读 · 2020年11月26日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员