项目名称: 储氢、供氢新概念-电解液氨制氢及其反应机理

项目编号: No.21301152

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 董宝霞

作者单位: 扬州大学

项目金额: 25万元

中文摘要: 氨是一种富氢载体,易于存储、价格低廉,且不会带来温室气体,但分解温度过高限制了其作为储氢材料的应用。298 K时液氨的理论分解电压为0.077 V,电化学方法有望实现便捷、经济的氨分解制氢。本项目拟建立耐压、耐低温三电极液氨电解池实验与分析体系,利用金属氨基化合物或铵盐作为支持电解质电解液氨制备氢气和氮气,研究各种金属电极材料在液氨中的析氢或析氮反应过程,获得各种电化学和动力学参数,探讨反应决速步骤并揭示可能的反应机理;结合反应机理合理选择并设计制备具有高催化活性和稳定性、低过电位的(贵)金属电极材料,建立基体材料、镀液组分、金属沉积量及比例、电极比表面积和表面形貌等参数与析氢或析氮性能以及过电位的关系;探讨温度、内衬材料、电解质以及电催化剂对电解效率的影响,降低欧姆损耗与反应过电位,优化电解池,实现液氨的高效电解。本研究将有助于电解液氨成为一种安全、高效、经济的储氢新技术。

中文关键词: 液氨;氢能;碱金属氨基化物;铵盐;电解

英文摘要: Ammonia is regarded as a kind of hydrogen carrier with high hydrogen capacity.It exhibits desirable characteristics of facile storage, low price and along with non-greenhouse gas.But the high decomposition temperature limits its application as hydrogen storage material.The theoretical electrolysis voltage of liquid ammonia at 298 K is calculated by 0.077 V. The electrochemical technique is a promising method to realize the convenient and econimic decomposition of ammonia to hydrogen.In this project, a fundamental research will be performed on the electrolysis of liquid ammonia based on a new concept by using metal amide or ammonium salt as the supporting electrolyte for generation of hydrogen and nitrogen. The reasonable electrolysis experimental and analytical system will be built up on the basis of a three-electrodes electrolysis cell which could bear high pressure and low temperature,so as to investigate the hydrogen (or nitrogen) evolution reaction process on different metal electrodes in liquid ammonia. We intend to explore the rate-limited step as well as the kinetic reaction mechanism of hydrogen (or nitrogen) evolution reaction by acquiring the corresponding electrochemical and kinetic parameters.On the basis of the reaction mechanism, the desirable (noble) metal electrode materials with high catalytic a

英文关键词: liquid ammonia;hydrogen energy;metal amides;ammonium salts;electrolysis

成为VIP会员查看完整内容
1

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
110+阅读 · 2021年4月7日
专知会员服务
96+阅读 · 2021年2月6日
工业人工智能的关键技术及其在预测性维护中的应用现状
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
白雪 | NLP加持知识图谱在金融事件挖掘中的应用
开放知识图谱
14+阅读 · 2018年9月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
110+阅读 · 2021年4月7日
专知会员服务
96+阅读 · 2021年2月6日
工业人工智能的关键技术及其在预测性维护中的应用现状
相关资讯
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
白雪 | NLP加持知识图谱在金融事件挖掘中的应用
开放知识图谱
14+阅读 · 2018年9月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员