【机器人】工业机器人的内部机构(附视频)

2020 年 7 月 9 日 产业智能官

德国kuka工业机器人的主要内部结构构造


一、机器人驱动装置
概念:要使机器人运行起来, 需给各个关节即每个运动自由度安置传动装置 作用:提供机器人各部位、各关节动作的原动力。
驱动系统:可以是液压传动、气动传动、电动传动, 或者把它们结合起来应用的综合系统; 可以是直接驱动或者是通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接驱动。
1、电动驱动装置
电动驱动装置的能源简单,速度变化范围大,效率高,速度和位置精度都很高。但它们多与减速装置相联,直接驱动比较困难。
电动驱动装置又可分为直流(DC)、交流(AC)伺服电机驱动和步进电机驱动。直流伺服电机电刷易磨损,且易形成火花。无刷直流电机也得到了越来越广泛的应用。步进电机驱动多为开环控制,控制简单但功率不大,多用于低精度小功率机器人系统。
电动上电运行前要作如下检查:
1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);
2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);
3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。
4)一定要搞清楚接地方法,还是采用浮空不接。
5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。
2、液压驱动
通过高精度的缸体和活塞来完成,通过缸体和活塞杆的相对运动实现直线运动。
优点:功率大,可省去减速装置直接与被驱动的杆件相连,结构紧凑,刚度好,响应快,伺服驱动具有较高的精度。
缺点:需要增设液压源,易产生液体泄漏,不适合高、低温场合,故液压驱动目前多用于特大功率的机器人系统。
选择适合的液压油。防止固体杂质混入液压系统,防止空气和水入侵液压系统 。机械作业要柔和平顺机械作业应避免粗暴,否则必然产生冲击负荷,使机械故障频发,大大缩短使用寿命。要注意气蚀和溢流噪声。作业中要时刻注意液压泵和溢流阀的声音,如果液压泵出现“气蚀”噪声,经排气后不能消除,应查明原因排除故障后才能使用。保持适宜的油温。液压系统的工作温度一般控制在30~80℃之间为宜。
3、气压驱动
气压驱动的结构简单,清洁,动作灵敏,具有缓冲作用。.但与液压驱动装置相比,功率较小,刚度差,噪音大,速度不易控制,所以多用于精度不高的点位控制机器人。
(1)具有速度快、系统结构简单,维修方便、价格低等特点。适于在中、小负荷的机器人中采用。但因难于实现伺服控制,多用于程序控制的机械人中,如在上、下料和冲压机器人中应用较多。
(2)在多数情况下是用于实现两位式的或有限点位控制的中、小机器人中的。
(3)控制装置目前多数选用可编程控制器(PLC控制器)。在易燃、易爆场合下可采用气动逻辑元件组成控制装置。
二、直线传动机构
传动装置是连接动力源和运动连杆的关键部分,根据关节形式,常用的传动机构形式有直线传动和旋转传动机构。
直线传动方式可用于直角坐标机器人的X、Y、Z向驱动,圆柱坐标结构的径向驱动和垂直升降驱动,以及球坐标结构的径向伸缩驱动。
直线运动可以通过齿轮齿条、丝杠螺母等传动元件将旋转运动转换成直线运动,也可以有直线驱动电机驱动,也可以直接由气缸或液压缸的活塞产生。
1、齿轮齿条装置
通常齿条是固定的。齿轮的旋转运动转换成托板的直线运动。
优点:结构简单。
缺点:回差较大。



2、滚珠丝杠
在丝杠和螺母的螺旋槽内嵌入滚珠,并通过螺母中的导向槽使滚珠能连续循环。
优点:摩擦力小,传动效率高,无爬行,精度高
缺点:制造成本高,结构复杂。




自锁问题:理论上滚珠丝杠副也可以自锁,但是实际应用上没有使用这个自锁的,原因主要是:可靠性很差,或加工成本很高;因为直径与导程比非常大,一般都是再加一套蜗轮蜗杆之类的自锁装置。
三、旋转传动机构
采用旋转传动机构的目的是将电机的驱动源输出的较高转速转换成较低转速,并获得较大的力矩。机器人中应用较多的旋转传动机构有齿轮链、同步皮带和谐波齿轮。
1、齿轮链
(1)转速关系
(2)力矩关系
2、同步皮带
同步带是具有许多型齿的皮带,它与同样具有型齿的同步皮带轮相啮合。工作时相当于柔软的齿轮。
优点:无滑动,柔性好,价格便宜,重复定位精度高。
缺点:具有一定的弹性变形。




3、谐波齿轮
谐波齿轮由刚性齿轮、谐波发生器和柔性齿轮三个主要零件组成,一般刚性齿轮固定,谐波发生器驱动柔性齿轮旋转。
主要特点:
(1)、传动比大,单级为50—300。
(2)、传动平稳,承载能力高。
(3)、传动效率高,可达70%—90%。
(4)、传动精度高,比普通齿轮传动高3—4倍。
(5)、回差小,可小于3’。
(6)、不能获得中间输出,柔轮刚度较低。
谐波传动装置在机器人技术比较先进的国家已得到了广泛的应用。仅就日本来说,机器人驱动装置的60%都采用了谐波传动。
美国送到月球上的机器人,其各个关节部位都采用谐波传动装置,其中一只上臂就用了30个谐波传动机构。
前苏联送入月球的移动式机器人“登月者”,其成对安装的8个轮子均是用密闭谐波传动机构单独驱动的。德国大众汽车公司研制的ROHREN、GEROT R30型机器人和法国雷诺公司研制的VERTICAL 80型机器人等都采用了谐波传动机构。
四、机器人传感系统
1、感受系统由内部传感器模块和外部传感器模块组成, 用以获取内部和外部环境状态中有意义的信息。
2、智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。
3、智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。
4、对于一些特殊的信息, 传感器比人类的感受系统更有效。
五、机器人位置检测
旋转光学编码器是最常用的位置反馈装置。光电探测器把光脉冲转化成二进制波形。轴的转角通过计算脉冲数得到,转动方向由两个方波信号的相对相位决定。
感应同步器输出两个模拟信号——轴转角的正弦信号和余弦信号。轴的转角由这两个信号的相对幅值计算得到。感应同步器一般比编码器可靠,但它的分辨率较低。
电位计是最直接的位置检测形式。它连接在电桥中,能够产生与轴转角成正比的电压信号。但是,由于分辨率低、线性不好以及对噪声敏感。
转速计能够输出与轴的转速成正比的模拟信号。如果没有这样的速度传感器,可以通过对检测到的位置相对于时间的差分得到速度反馈信号。
六、机器人力检测
力传感器通常安装在操作臂下述三个位置:
1、安装在关节驱动器上。可测量驱动器/减速器自身的力矩或者力的输出。但不能很好地检测末端执行器与环境之间的接触力。
2、安装在末端执行器与操作臂的终端关节之间,可称腕力传感器。通常,可以测量施加于末端执行器上的三个到六个力/力矩分量。
3、安装在末端执行器的“指尖”上。通常,这些带有力觉得手指内置了应变计,可以测量作用在指尖上的一个到四个分力。
七、机器人-环境交互系统
1、机器人-环境交互系统是实现工业机器人与外部环境中的设备相互联系和协调的系统。
2、工业机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。也可以是多台机器人、多台机床或设备、多个零件存储装置等集成 。
3、也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。
八、人机交互系统
人机交互系统是使操作人员参与机器人控制并与机器人进行联系的装置。该系统归纳起来分为两大类: 指令给定装置和信息显示装置。



先进制造业+工业互联网




产业智能官  AI-CPS


加入知识星球“产业智能研究院”:先进制造业OT(自动化+机器人+工艺+精益)和工业互联网IT(云计算+大数据+物联网+区块链+人工智能)产业智能化技术深度融合,在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的产业智能化平台;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。


产业智能化平台作为第四次工业革命的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎; 重构设计、生产、物流、服务等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生 新技术、新产品、新产业、新业态和新模式; 引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。

产业智能化技术分支用来的今天,制造业者必须了解如何将“智能技术”全面渗入整个公司、产品、业务等商业场景中, 利用工业互联网形成数字化、网络化和智能化力量,实现行业的重新布局、企业的重新构建和焕然新生。

版权声明产业智能官(ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源,涉权烦请联系协商解决,联系、投稿邮箱:erp_vip@hotmail.com。




登录查看更多
0

相关内容

谐波是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量,通常称为高次谐波,而基波是指其频率与工频(50Hz)相同的分量。高次谐波的干扰是当前电力系统中影响电能质量的一大“公害”,亟待采取对策。
【CMU博士论文】机器人深度强化学习,128页pdf
专知会员服务
131+阅读 · 2020年8月27日
专知会员服务
93+阅读 · 2020年8月7日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
107+阅读 · 2020年1月2日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
26+阅读 · 2019年11月19日
重磅发布|《全球机器人报告2019》出炉!附全文下载
机器人大讲堂
7+阅读 · 2019年9月28日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【机器人】机器人PID控制
产业智能官
10+阅读 · 2018年11月25日
一只小白的学习自述:如何用OpenMV Cam 点亮机器人双眼。
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
独家揭秘 | 波士顿动力SpotMini机器人自主导航技术
计算机视觉life
21+阅读 · 2018年5月15日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
【CMU博士论文】机器人深度强化学习,128页pdf
专知会员服务
131+阅读 · 2020年8月27日
专知会员服务
93+阅读 · 2020年8月7日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
122+阅读 · 2020年3月30日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
107+阅读 · 2020年1月2日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
26+阅读 · 2019年11月19日
Top
微信扫码咨询专知VIP会员