近年来,人工智能领域经历了一系列深刻的技术变革,广泛改变了人类社会的生产生活。但这些落地的实际应用也带来了新的担忧,安全性与可靠性愈发重要。比如在自动驾驶中,缺乏安全性与可靠性的深度学习系统将会招致严重的安全事故。对于一些大型预训练语言模型,尽管在众多自然语言处理任务中取得了巨大的成功,但仍有研究发现,这些模型容易受到对抗样本的攻击。伊利诺伊大学安全学习实验室SL2(Secure Learning Lab) 由助理教授李博以及12名博士生和2名博士后组成,实验室隶属于计算机系。SL2实验室致力于可信赖机器学习,关注可验证的机器学习的安全性、隐私保护、公平性、可泛化性等以及它们之间的本质联系,同时关注并引领未来可信赖机器学习算法和模型大规模部署和应用。SL2实验室的研究成果重点是构建可验证性的可信机器学习算法、平台和系统。目前实验室的研究成果在自动驾驶、智慧医疗等对安全性质要求颇高的应用中已得到应用与验证。为了帮助大家了解这一领域最新进展,最新一期「机器之心走近全球顶尖实验室」邀请到来自伊利诺伊大学安全学习实验室的多位成员,他们将在11月1日至11月3日连续三天带来线上分享,分享内容包括大规模可验证可信深度学习、后门攻击及针对其的可验证模型鲁棒性、自动驾驶汽车的危险场景测试与安全评估等。 11月1日 10:00-10:10开场介绍开场嘉宾:李博,伊利诺伊大学厄巴纳-香槟分校计算机科学系助理教授。她曾荣获许多学术奖项,包括麻省理工学院技术评论 MIT TR-35 、Alfred P. Sloan 斯隆研究奖、NSF CAREER 奖,英特尔新星奖、赛门铁克研究实验室奖学金、Dean's Award for Excellence in Research, C.W. Gear Outstanding Junior Faculty Award,并获得来自Amazon、Facebook、谷歌、英特尔和 IBM 等科技公司的学术研究奖。她的论文曾获多个顶级机器学习和安全会议的最佳论文奖;研究成果还被永久收藏于英国科技博物馆。李博的研究侧重于可信赖机器学习、计算机安全、机器学习、隐私和博弈论的理论研究和实践分析。她曾设计多个鲁棒性机器学习算法及和隐私保护数据发布系统。她的工作曾被《自然》、《连线》、《财富》和《纽约时报》等主要媒体报道个人主页:http://boli.cs.illinois.edu/
11月1日 10:10-10:40
大规模可验证可信深度学习分享嘉宾:李林翼,伊利诺伊大学厄巴纳-香槟分校计算机系五年级博士生,导师是李博教授,共同指导老师是谢涛教授。李林翼的研究方向为机器学习与计算机安全。具体地,他研究如何构建可验证的可信深度学习系统。他的论文发表于 ICML、NeurIPS、ICLR、CCS、S&P 等国际会议,被授予 AdvML Rising Star、UChicago Data Science Rising Star 等奖项。分享摘要:可验证深度学习为大规模的学习系统提供强安全性和可靠性保证。本次分享将着重介绍两个框架:TSS与CROP。TSS 框架针对图像分类问题,在广泛存在的图像变换扰动下提供鲁棒性保证,CROP 为深度强化学习系统在状态扰动的环境下提供鲁棒性保证。
11月1日 10:40-11:20
后门攻击及针对其的可验证模型鲁棒性分享嘉宾:徐晓骏,伊利诺伊大学厄巴纳-香槟分校五年级博士生,导师为李博教授和Carl A. Gunter教授。徐晓骏当前的主要研究方向为机器学习模型训练时的安全性保证,以及可验证的机器学习鲁棒性,从而为大型机器学习模型在实际生活中的应用提供安全保障。分享摘要:近年来机器学习技术不断发展,已经在许多领域取得了成果。然而机器学习模型的训练需要大量数据和计算资源,为此,很多人会使用他人共享的数据集或训练完成的模型。这种共享行为会导致许多安全隐患,比如一种著名的攻击——后门攻击。攻击者能通过修改训练集或模型参数,在模型中加入后门并共享给他人。这类后门模型在普通的输入上表现正常,然而,当输入中包含特殊的触发图案时,模型就会被攻击者操纵而产生错误输出。本次分享会介绍两种防御措施,一种是在测试时的检测模型,从而判断当前模型是否含有后门;另一种是在训练时的可验证鲁棒训练算法,使得训练者即使在后门数据集上也能训练出良好的模型。