加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~
作者:ycszen
https://zhuanlan.zhihu.com/p/22252270
来源:知乎,已获作者授权转载,禁止二次转载。
本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。
此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。
SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:
其中,是学习率,是梯度 SGD完全依赖于当前batch的梯度,所以 可理解为允许当前batch的梯度多大程度影响参数更新
缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)
选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】
momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:
其中,是动量因子
特点:
下降初期时,使用上一次参数更新,下降方向一致,乘上较大的能够进行很好的加速
下降中后期时,在局部最小值来回震荡的时候,, 使得更新幅度增大,跳出陷阱
在梯度改变方向的时候,能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛
nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。将上一节中的公式展开可得:
可以看出, 并没有直接改变当前梯度,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:
所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:
momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)
其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法
Adagrad其实是对学习率进行了一个约束。即:
此处,对从1到进行一个递推形成一个约束项regularizer, , e用来保证分母非0
特点:
前期较小的时候, regularizer较大,能够放大梯度
后期较大的时候,regularizer较小,能够约束梯度
适合处理稀疏梯度
缺点:
由公式可以看出,仍依赖于人工设置一个全局学习率
设置过大的话,会使regularizer过于敏感,对梯度的调节太大
中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束
Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:
在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:
其中,代表求期望。
此时,可以看出Adadelta已经不用依赖于全局学习率了。
特点:
训练初中期,加速效果不错,很快
训练后期,反复在局部最小值附近抖动
RMSprop可以算作Adadelta的一个特例:
当时,就变为了求梯度平方和的平均数。
如果再求根的话,就变成了RMS(均方根):
此时,这个RMS就可以作为学习率的一个约束:
特点:
其实RMSprop依然依赖于全局学习率
RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
适合处理非平稳目标 - 对于RNN效果很好
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:
其中,,分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望,的估计;,是对 , 的校正,这样可以近似为对期望的无偏估计。可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而 对学习率形成一个动态约束,而且有明确的范围。
特点:
结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
对内存需求较小
为不同的参数计算不同的自适应学习率
也适用于大多非凸优化 - 适用于大数据集和高维空间
Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:
可以看出,Adamax学习率的边界范围更简单
Nadam类似于带有Nesterov动量项的Adam。公式如下:
可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。
对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值 SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。 在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果
最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了... ...
损失平面等高线
在鞍点处的比较
[1]Adagrad(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
[2]RMSprop[Lecture 6e]
(http://www.cs.toronto.edu/~tijmen/csc321/lecture_notes.shtml)
[3]Adadelta(http://arxiv.org/abs/1212.5701)
[4]Adam(http://arxiv.org/abs/1412.6980v8)
[5]Nadam(http://cs229.stanford.edu/proj2015/054_report.pdf)
[6]On the importance of initialization and momentum in deep learning
(http://www.cs.toronto.edu/~fritz/absps/momentum.pdf)
[7]Keras中文文档(http://keras-cn.readthedocs.io/en/latest/)
[8]Alec Radford(https://twitter.com/alecrad)
[9]An overview of gradient descent optimization algorithms(http://sebastianruder.com/optimizing-gradient-descent/)
[10]Gradient Descent Only Converges to Minimizers(http://www.jmlr.org/proceedings/papers/v49/lee16.pdf)
[11]Deep Learning:Nature
(http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html)
-完-
*延伸阅读
添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~
△长按添加极市小助手
△长按关注极市平台
觉得有用麻烦给个在看啦~