【泡泡一分钟】语义直线检测与应用

2018 年 10 月 21 日 泡泡机器人SLAM

每天一分钟,带你读遍机器人顶级会议文章

标题:Semantic Line Detection and Its Applications
作者:Jun-Tae Lee, Han-Ul Kim,Chul Lee,Chang-Su Kim

来源:International Conference on Computer Vision (ICCV 2017)

编译:颜青松

审核:陈世浪

欢迎个人转发朋友圈;其他机构或自媒体如需转载,后台留言申请授权


摘要

语义直线是一种能够展示图像布局的特殊直线,在图像分析和场景理解中具有重要作用,然而目前还没有十分可靠的语义直线提取方法。

在本文中,作者提出了一个基于卷积神经网络的多任务的语义直线提取方法,其中语义直线提取包括一个分类任务和一个回归任务。本文的流程如下:首先使用卷积和最大池化获取输入图像的多尺度特征图;然后利用线池化层(line pooling layer)从特征图中提取可能的直线;最后使用分类层来判断该直线是否是语义直线和使用回归层来优化该直线的位置。

实验结果证明本文的方法能够准确稳健的从图片中提取语义线,并且能够应用于水平估计、布局标准和图像简化等领域。

图1 本文算法的框架图

图2 语义直线与线段提取的区别,其中(a)展示的是语义直线,(b)和(c)分别展示的是使用LSD和EDLins提取的线段。

图3 水平线检测结果

图4 基于水平线检测的布局调整,将图片中的水平线置平

图5 基于语义直线的场景简化

Abstract 

Semantic lines characterize the layout of an image. Despite their importance in image analysis and scene understanding, there is no reliable research for semantic line detection. In this paper, we propose a semantic line detector using a convolutional neural network with multi-task learning, by regarding the line detection as a combination of classification and regression tasks. We use convolution and max-pooling layers to obtain multi-scale feature maps for an input image. Then, we develop the line pooling layer to extract a feature vector for each candidate line from the feature maps. Next, we feed the feature vector into the parallel classification and regression layers. The classification layer decides whether the line candidate is semant ic or not. In case of a semantic line, the regression layer determines the offset for refining the line location. Experimental results show that the proposed detector extracts semantic lines accurately and reliably. Moreover, we demonstrate that the proposed detector can be used successfully in three applications: horizon estimation, composition enhancement, and image simplification.



如果你对本文感兴趣,想要下载完整文章进行阅读,可以关注【泡泡机器人SLAM】公众号(paopaorobot_slam)

欢迎来到泡泡论坛,这里有大牛为你解答关于SLAM的任何疑惑。

有想问的问题,或者想刷帖回答问题,泡泡论坛欢迎你!

泡泡网站:www.paopaorobot.org

泡泡论坛:http://paopaorobot.org/forums/


泡泡机器人SLAM的原创内容均由泡泡机器人的成员花费大量心血制作而成,希望大家珍惜我们的劳动成果,转载请务必注明出自【泡泡机器人SLAM】微信公众号,否则侵权必究!同时,我们也欢迎各位转载到自己的朋友圈,让更多的人能进入到SLAM这个领域中,让我们共同为推进中国的SLAM事业而努力!

商业合作及转载请联系liufuqiang_robot@hotmail.com

登录查看更多
7

相关内容

ICCV 的全称是 IEEE International Conference on Computer Vision,即国际计算机视觉大会,由IEEE主办,与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议,被澳大利亚ICT学术会议排名和中国计算机学会等机构评为最高级别学术会议,在业内具有极高的评价。不同于在美国每年召开一次的CVPR和只在欧洲召开的ECCV,ICCV在世界范围内每两年召开一次。ICCV论文录用率非常低,是三大会议中公认级别最高的。ICCV会议时间通常在四到五天,相关领域的专家将会展示最新的研究成果。
高效医疗图像分析的统一表示
专知会员服务
35+阅读 · 2020年6月23日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
45+阅读 · 2020年4月10日
专知会员服务
87+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【泡泡一分钟】基于图神经网络的情景识别
泡泡机器人SLAM
11+阅读 · 2018年11月21日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
【泡泡一分钟】多尺度优化的CNN目标检测算法(ICCV2017-55)
泡泡机器人SLAM
8+阅读 · 2018年7月20日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
4+阅读 · 2017年11月4日
Arxiv
5+阅读 · 2016年12月29日
VIP会员
相关资讯
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【泡泡一分钟】基于图神经网络的情景识别
泡泡机器人SLAM
11+阅读 · 2018年11月21日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
【泡泡一分钟】多尺度优化的CNN目标检测算法(ICCV2017-55)
泡泡机器人SLAM
8+阅读 · 2018年7月20日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
Top
微信扫码咨询专知VIP会员