刚入门推荐算法的小伙伴常常苦恼该从哪儿开始学。
我建议你优先读paper,去熟悉推荐算法的技术发展脉络-一文尽览推荐系统模型演变史,理解常用的推荐算法模型-最新深度学习推荐系统综述:从协同过滤到信息增强的推荐系统,建立起自己的一套推荐技术理论框架。而后,才谈得上做项目、创新发论文。
我整理了10篇必读的推荐算法baseline paper,推荐给你——
Wide & Deep Learning for Recommender Systems
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Neural Factorization Machines for Sparse Predictive Analytics
FiBiNET: Combining Feature Importance and Bilinear Feature Interaction for Click-Through Rate
Attentional Factorization Machines
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Deep & Cross Network for Ad Click Predictions
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
Neural Collaborative Filtering
Deep Interest Network for Click-Through Rate Prediction
除了上述10篇论文之外,我建议想入门的同学去听一听Piruto老师的《推荐算法入门:Wide&Deep论文带读》公开分享。
扫码0.1元预约直播
附赠Wide&Deep代码及直播讲义
以下为完整分享大纲
推荐算法入门
Wide&Deep论文带读
第1天:9月7日-推荐系统算法概述(直播)
01 推荐系统各部分介绍
02 召回算法概述
03 排序算法概述
04 wide&deep概览
第2天:9月8日-Wide&Deep论文精读(直播)
01 Introduction
02 Recommender system overview
03 Wide&Deep Learning
04 System Implementation
05 Experiment Results
扫码0.1元预约直播
附赠代码&分享讲义