线虫神经系统的3D模型。线虫只有302个神经元,因此它是第一个(也是迄今为止唯一的)可以编译出完整、详细的连接组的动物。科学家将复杂的交配行为分解为寻找伴侣、交配和休息等子类。然后将神经元活动映射到蠕虫的连接组上,以识别在交配过程中处理环境信息的大脑机制。据该研究论文的第一作者、神经科学家Vladislav Susoy介绍,由此产生的大脑活动图在研究中使用的8种蠕虫之间显示出高度一致,以至于可以用来预测第9种蠕虫的行为。因此,科学家们决定通过实验来检验这个预测。以一种新的蠕虫为例,他们精确地移除了这种蠕虫与「转动」有关的五个神经元中的一个,结果,蠕虫果然失去了转动的能力。 Susoy说:「这种联系如此清晰,真是令人惊讶。」研究斑马鱼大脑的哈佛大学神经科学家Florian Engert称,这篇论文是该领域的「里程碑」,因为它使用连接组来考察复杂的行为。他表示,连接组正在成为一种关键资源。「它可以作为研究神经元回路如何运作的工具和数据库。」恩格特实验室的神经科学家和博士后研究员Gregor Schuhknecht说。不过,除了解释动物行为的基础之外,连接组学研究还可以揭示关于这些行为如何连接到大脑的微妙细节。Lichtman表示,大脑可以用无数种方式做事。我的猜测是,在几乎所有情况下,大脑神经系统很少采用最简单的路径,因为它的设计并不简单。例如,一段时间以来人们都知道,对线虫而言,幼虫和成虫的神经元之间的连接形式是明显不同的。为了了解大脑整个发育过程中的变化。 在最近《自然》上的一篇文章中,Lichtman,Samuel and Mei Zhen等研究人员比较了八个基因完全相同的蛔虫幼虫和成虫之间神经元连接方式的差异。根据论文第一作者Daniel Witvliet的说法,这项研究最有趣的发现是,尽管这些蠕虫在基因上是相同的,但它们大脑中神经细胞之间的连接有多达40%是不同的。这一发现表明了对大量大脑链接图进行比较的重要性。「你不能只是说,'我们已经绘制了蠕虫连接组图',因为每个连接组都是略有不同的。」Witvliet说。Lichtman说,这一发现表明存在两类连接:可变的连接和一致的连接。如果事实证明,动物需要建立更一致的连接,来支持生存所必需的神经活动,那么他认为,一些连接的变化程度可能成为连接组中重要特征的标志。「如果可以比较多个连接组,就可能看出特征上的重要差异,而不是完全随机的。」Lichtman说。 他表示,在未来,连接组学能定期分析多个个体的大脑,比较健康和不健康的动物、年轻和年老的动物等等。「我认为,一旦绘制大脑神经连接图成为平常之事,这很可能会成为现实。」
神经科学的「n of 1」问题
然而,解决大规模的连接组学的问题,说起来容易,做起来难。目前来说,在神经映射技术方面的确有了一定的进展,但是整个领域仍然存在Lichtman所说的「n of 1」的问题。也就是说,即便是绘制一个人的大脑线路图,也不是一项可以轻易完成的任务,尤其是这个物种要比蠕虫复杂得多。哈佛大学的教授Aravinthan D.T. Samuel也同意这一观点:「我认为连接组学在大多数情况下就像珠穆朗玛峰的探险。做过一次之后,就认为自己已经完成了。」而这也正是连接组学研究面临的一个重大障碍,特别是对复杂的生物来说。比如,当Lichtman和他的同事正在绘制人脑片段时,他们发现一处非常的奇怪。但是却也无从得知这是一个政策现象还是由于这个人独有历史和基因而产生的特殊案例。当然,如果能绘制出100个人类大脑的等效样本,那么这些问题也就可以略知一二了。但不幸的是,每个大脑都有1.4PB的信息,这么做显然是不太可能的。