项目名称: 耦合微流控功能的三维神经微电极阵列及其应用研究

项目编号: No.61271161

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 李刚

作者单位: 重庆大学

项目金额: 76万元

中文摘要: 在细胞和网络水平,精确定位和分析神经元群体活动的时空特性对于我们理解神经系统的高级功能具有重要意义。由于其无损、多位点同时记录和刺激的特性,神经微电极阵列(microelectrode array, MEA)已成为体外研究神经网络电生理活动最强有力的工具。但是,现有MEA技术仍然存在记录信号信噪比低、实验中神经细胞易迁移以及无法实现高分辨率的外部化学刺激等缺点,因此难以对复杂神经网络中神经元活动发生、传递和响应等过程进行高精度、可靠的时空相关性研究。为了更有效和精确地研究神经网络活动的动态过程,本项目拟研制一种耦合微流控功能单元的、可维持细胞定位的三维MEA芯片,以实现对神经信号的高灵敏检测、神经元细胞群体的定位化学刺激以及神经网络活动时空相关性的可靠研究,从而为神经网络活动和神经系统高级功能研究提供有效的手段和工具,促进神经科学的快速发展。

中文关键词: 微电极阵列;三维;神经细胞;神经网络;微流控

英文摘要: At the cellular and network level, spatiotemporally coordinated activity of large populations of single neurons is crucial for understanding higher functions of the nervous system. Due to its capability for non-invasive multisite recording and stimulation, planar microelectrode arrays (MEAs) has proven to be a powerful tool for high-resolution interrogation of electrophysiological activity of neural network. However, due to cell migration during culturing, low signal-to-noise ratio and the absence of high-resolution chemical stimulation, it is difficult for current MEA techniques to obtain an accurate portrayal of the signals transmitted in complex neural network and the effect of outside influences on those transmissions. In order to study the dynamics of complex neural networks and monitor the responses of neuronal micro-circuit to external stimulation more effectively and accurately, this program presents a novel MEA platform to enable high sensitive recording, and high precise spatial stimulation and reliable spatio-temporal analysis of neuronal signals by fabricating 3D barrier-type MEAs coupled with micro?uidic arrays. This MEA chip holds promise to provide an efficient tool for studying the activity of neural network and higher functions of nervous system and to move the study of neuroscience into the fa

英文关键词: Microelectrode array;Three dimension;Neuron;Neural networks;Microfluidics

成为VIP会员查看完整内容
0

相关内容

 100页!IEEE标准协会《脑机接口神经技术标准路线图》
专知会员服务
32+阅读 · 2022年2月13日
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
43+阅读 · 2020年12月8日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Communication Bounds for Convolutional Neural Networks
Arxiv
0+阅读 · 2022年4月16日
Arxiv
57+阅读 · 2021年5月3日
小贴士
相关VIP内容
 100页!IEEE标准协会《脑机接口神经技术标准路线图》
专知会员服务
32+阅读 · 2022年2月13日
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
43+阅读 · 2020年12月8日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员