无需强化学习的与人类偏好对齐的语言模型:Wombat袋熊

2023 年 4 月 13 日 PaperWeekly





OpenAI 的 ChatGPT 理解多种多样的的人类指令,并且可以很好的应对不同的语言任务需求。自发布以来就掀起了对于通用人工智能的讨论。ChatGPT 令人惊叹的能力来源于一种新颖的大规模语言模型微调方法:RLHF(通过强化学习对齐人类反馈)。

RLHF 方法不同于以往传统的监督学习的微调方式,该方法首先让模型根据指令提示生成不同的回复,之后通过人工的评价反馈,使用强化学习的方式对 LLM 进行微调。RLHF 解锁了语言模型跟从人类指令的能力,并且使得语言模型的能力和人类的需求和价值观对齐,从而使得 RLHF 微调下的语言模型具有令人惊叹的能力。 

当前研究 RLHF 的工作主要使用 PPO 算法对语言模型进行优化。从一个使用指令和人类示范的数据通过监督学习微调的语言模型开始,PPO 算法首先使用这个语言模型输出对于不同指令数据的回复,之后通过一个奖励模型对语言模型的不同回复进行打分评价,最后使用打分评价通过策略梯度下降的方式对语言模型进行优化。

考虑到语言模型在训练中不断变化和奖励模型有限的泛化能力,PPO 在工程实践中需要反复迭代上述流程,并且在奖励的设计上需要限制微调的语言模型不能偏离初始模型太远。由于使用强化学习训练包含有众多的超参数,并且在算法迭代的过程中需要多个独立模型的相互配合,错误的实现细节都会导致不尽如人意的训练结果。 

在和人类对齐的角度上,强化学习算法是不是必须的呢?该篇论文提出了 基于排序的人类偏好对齐方法 。它对不同语言模型生成的回复(回复可以来自 ChatGPT、GPT-4、当前的训练模型或者人类标注数据)进行评分,评分来自于回复在当前模型下的对数概率。RRHF 通过通过排名损失使评分与人类的偏好(或者代理的奖励模型)对齐。RRHF 训练好的模型可以同时作为生成语言模型和奖励模型使用。下图中对比了 PPO 算法和 RRHF 算法的区别。

RRHF 算法可以有效地将语言模型输出概率与人类偏好对齐,并且在微调期间只需要 1 到 2 个模型。相比之下,PPO 需要 4 个模型:微调的语言模型,参考语言模型,奖励模型和价值模型相互配合。在实际的训练中,更少的模型数量可以帮助减少显存的占用,使得 RRHF 可以更高效地利用计算资源,并扩展到更大规模的模型上进行训练。

此外,RRHF 在编码和超参数方面比 PPO 更简单。整个对齐过程(包括监督学习、训练奖励模型、进行 PPO)可以在一次 RRHF 训练中完成。文章在 Anthropic 发布的 Helpful and Harmless 数据上使用 Meta 的 LLaMA 和斯坦福的 Alpaca 模型进行实验,发现 RRHF 可以达到和 PPO 相当的水平。在代码实践上,RRHF 和传统的监督学习微调算法的难易程度相当,极大地减小了语言模型和人类偏好对齐的工程难度。 

同时,文章作者基于 RRHF 算法,使用 Alpaca 的提示数据并利用 ChatGPT 或者 GPT-4 作为得分模型,训练了语言模型 Wombat-7B 和 Wombat-7B-GPT4。训练时间只需要几个小时。训练得到的袋熊 Wombat‍ 可以更好的与人类偏好对齐。以下是来自袋熊 Wombat‍ 的一个自我介绍。

Query: Give an introduction of wombat 


Wombat: Wombat is a marsupial mammal native to Australia. It is typically found in mountainous areas and is known for its burrowing behavior. Wombats are typically around two feet long and weigh up to 30 pounds. They have a gray coat with white on their chests, and they have thick and powerful hind legs which they use for digging. Wombats are mostly nocturnal and eat a variety of insects, leaves, and grasses.




论文链接:

https://arxiv.org/abs/2304.05302

作者单位:

阿里巴巴达摩院

代码链接:

https://github.com/GanjinZero/RRHF


更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编



🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧



·
·

登录查看更多
4

相关内容

【ICML2023】在指令调优期间对语言模型进行毒化
专知会员服务
28+阅读 · 2023年5月3日
【OpenAI-John Schulman】从人类反馈中强化学习:进展与挑战
专知会员服务
62+阅读 · 2023年4月22日
ChatGPT 背后的“功臣”——RLHF 技术详解
专知会员服务
168+阅读 · 2023年2月21日
ChatGPT核心技术:强化学习PPO算法
专知会员服务
158+阅读 · 2023年2月13日
【MIT博士论文】多模态模型学习语言,138页pdf
专知会员服务
57+阅读 · 2022年12月23日
【ICML2022】通过评估演示者的专业知识进行模仿学习
专知会员服务
16+阅读 · 2022年7月18日
少即是多?非参数语言模型,68页ppt
专知会员服务
23+阅读 · 2020年11月22日
AlphaZero的黑箱打开了!DeepMind论文登上PNAS
新智元
0+阅读 · 2022年11月18日
SIGIR2022 | 从Prompt的角度考量强化学习推荐系统
机器学习与推荐算法
1+阅读 · 2022年5月24日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
干货|浅谈强化学习的方法及学习路线
机器学习算法与Python学习
16+阅读 · 2018年3月28日
【干货】强化学习在生成对抗网络文本生成中扮演的角色(下)
【强化学习】强化学习+深度学习=人工智能
产业智能官
52+阅读 · 2017年8月11日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
157+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关VIP内容
相关资讯
AlphaZero的黑箱打开了!DeepMind论文登上PNAS
新智元
0+阅读 · 2022年11月18日
SIGIR2022 | 从Prompt的角度考量强化学习推荐系统
机器学习与推荐算法
1+阅读 · 2022年5月24日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
干货|浅谈强化学习的方法及学习路线
机器学习算法与Python学习
16+阅读 · 2018年3月28日
【干货】强化学习在生成对抗网络文本生成中扮演的角色(下)
【强化学习】强化学习+深度学习=人工智能
产业智能官
52+阅读 · 2017年8月11日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员