【导读】图像分类作为计算机视觉的经典任务。一直被学者们研究探讨,本文介绍并比较了2014年以来较为出色的图像分类论文与代码
性能比较
为了简单,只列出在ImageNet上Top1 和 Top5 精度比较,准确度越高并不代表模型越好,因为一些网络是为了减小模型复杂度设计的。
论文与代码
Very Deep Convolutional Networks for Large-Scale Image Recognition.
Karen Simonyan, Andrew Zisserman
pdf: https://arxiv.org/abs/1409.1556
code:torchvision: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
code:keras-applications :
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py
Going Deeper with Convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
pdf: https://arxiv.org/abs/1409.4842
code: unofficial-tensorflow :
https://github.com/conan7882/GoogLeNet-Inception
code: unofficial-caffe : https://github.com/lim0606/caffe-googlenet-bn
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
pdf: https://arxiv.org/abs/1502.01852
code: unofficial-chainer : https://github.com/nutszebra/prelu_net
Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
pdf: https://arxiv.org/abs/1512.03385
code: facebook-torch : https://github.com/facebook/fb.resnet.torch
code: torchvision : https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py
code: unofficial-keras : https://github.com/raghakot/keras-resnet
code: unofficial-tensorflow : https://github.com/ry/tensorflow-resnet
Identity Mappings in Deep Residual Networks
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
pdf: https://arxiv.org/abs/1603.05027
code: facebook-torch : https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua
code: official : https://github.com/KaimingHe/resnet-1k-layers
code: unoffical-pytorch : https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py
code: unoffical-mxnet : https://github.com/tornadomeet/ResNet
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna
pdf: https://arxiv.org/abs/1512.00567
code: torchvision : https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
pdf: https://arxiv.org/abs/1602.07261
code: unofficial-keras : https://github.com/kentsommer/keras-inceptionV4
code: unofficial-keras : https://github.com/titu1994/Inception-v4
code: unofficial-keras : https://github.com/yuyang-huang/keras-inception-resnet-v2
Resnet in Resnet: Generalizing Residual Architectures
Sasha Targ, Diogo Almeida, Kevin Lyman
pdf: https://arxiv.org/abs/1603.08029
code: unofficial-tensorflow : https://github.com/SunnerLi/RiR-Tensorflow
code: unofficial-chainer : https://github.com/nutszebra/resnet_in_resnet
Deep Networks with Stochastic Depth
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger
pdf: https://arxiv.org/abs/1603.09382
code: unofficial-torch : https://github.com/yueatsprograms/Stochastic_Depth
code: unofficial-chainer : https://github.com/yasunorikudo/chainer-ResDrop
code: unofficial-keras : https://github.com/dblN/stochastic_depth_keras
Wide Residual Networks
Sergey Zagoruyko, Nikos Komodakis
pdf: https://arxiv.org/abs/1605.07146
code: official : https://github.com/szagoruyko/wide-residual-networks
code: unofficial-pytorch : https://github.com/xternalz/WideResNet-pytorch
code: unofficial-keras : https://github.com/asmith26/wide_resnets_keras
code: unofficial-pytorch : https://github.com/meliketoy/wide-resnet.pytorch
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
pdf: https://arxiv.org/abs/1602.07360
code: torchvision : https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py
code: unofficial-caffe : https://github.com/DeepScale/SqueezeNet
code: unofficial-keras : https://github.com/rcmalli/keras-squeezenet
code: unofficial-caffe : https://github.com/songhan/SqueezeNet-Residual
Genetic CNN
Lingxi Xie, Alan Yuille
pdf: https://arxiv.org/abs/1703.01513
code: unofficial-tensorflow : https://github.com/aqibsaeed/Genetic-CNN
Designing Neural Network Architectures using Reinforcement Learning
Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar
pdf: https://arxiv.org/abs/1703.01513
code: official : https://github.com/bowenbaker/metaqnn
Deep Pyramidal Residual Networks
Dongyoon Han, Jiwhan Kim, Junmo Kim
pdf: https://arxiv.org/abs/1610.02915
code: official : https://github.com/jhkim89/PyramidNet
code: unofficial-pytorch : https://github.com/dyhan0920/PyramidNet-PyTorch
Densely Connected Convolutional Networks
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
pdf: https://arxiv.org/abs/1608.06993
code: official : https://github.com/liuzhuang13/DenseNet
code: unofficial-keras : https://github.com/titu1994/DenseNet
code: unofficial-caffe : https://github.com/shicai/DenseNet-Caffe
code: unofficial-tensorflow : https://github.com/YixuanLi/densenet-tensorflow
code: unofficial-pytorch : https://github.com/YixuanLi/densenet-tensorflow
code: unofficial-pytorch : https://github.com/bamos/densenet.pytorch
code: unofficial-keras : https://github.com/flyyufelix/DenseNet-Keras
FractalNet: Ultra-Deep Neural Networks without Residuals
Gustav Larsson, Michael Maire, Gregory Shakhnarovich
pdf: https://arxiv.org/abs/1605.07648
code: unofficial-caffe : https://github.com/gustavla/fractalnet
code: unofficial-keras : https://github.com/snf/keras-fractalnet
code: unofficial-tensorflow : https://github.com/tensorpro/FractalNet
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
pdf: https://arxiv.org/abs/1611.05431
code: official : https://github.com/facebookresearch/ResNeXt
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py
code: unofficial-pytorch : https://github.com/prlz77/ResNeXt.pytorch
code: unofficial-keras : https://github.com/titu1994/Keras-ResNeXt
code: unofficial-tensorflow : https://github.com/taki0112/ResNeXt-Tensorflow
code: unofficial-tensorflow : https://github.com/wenxinxu/ResNeXt-in-tensorflow
Interleaved Group Convolutions for Deep Neural Networks
Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang
pdf: https://arxiv.org/abs/1707.02725
code official : https://github.com/hellozting/InterleavedGroupConvolutions
Residual Attention Network for Image Classification
Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang
pdf: https://arxiv.org/abs/1704.06904
code: official : https://github.com/fwang91/residual-attention-network
code: unofficial-pytorch : https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch
code: unofficial-gluon : https://github.com/PistonY/ResidualAttentionNetwork
code: unofficial-keras : https://github.com/koichiro11/residual-attention-network
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
pdf: https://arxiv.org/abs/1610.02357
code: unofficial-pytorch : https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py
code: unofficial-tensorflow : https://github.com/kwotsin/TensorFlow-Xception
code: unofficial-caffe : https://github.com/yihui-he/Xception-caffe
code: unofficial-pytorch : https://github.com/tstandley/Xception-PyTorch
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
pdf: https://arxiv.org/abs/1704.04861
code: unofficial-tensorflow : https://github.com/Zehaos/MobileNet
code: unofficial-caffe : https://github.com/shicai/MobileNet-Caffe
code: unofficial-pytorch : https://github.com/marvis/pytorch-mobilenet
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py
PolyNet: A Pursuit of Structural Diversity in Very Deep Networks
Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin
pdf: https://arxiv.org/abs/1611.05725
code: official : https://github.com/open-mmlab/polynet
Dual Path Networks
Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng
pdf: https://arxiv.org/abs/1707.01629
code: official : https://github.com/cypw/DPNs
code: unoffical-keras : https://github.com/titu1994/Keras-DualPathNetworks
code: unofficial-pytorch : https://github.com/oyam/pytorch-DPNs
code: unofficial-pytorch : https://github.com/rwightman/pytorch-dpn-pretrained
Practical Block-wise Neural Network Architecture Generation
Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu
pdf: https://arxiv.org/abs/1708.05552
Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks
Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng
pdfhttps://arxiv.org/abs/1703.02180
code official : https://github.com/cypw/CRU-Net
code unofficial-mxnet : https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
pdf: https://arxiv.org/abs/1707.01083
code: unofficial-tensorflow : https://github.com/MG2033/ShuffleNet
code: unofficial-pytorch : https://github.com/jaxony/ShuffleNet
code: unofficial-caffe : https://github.com/farmingyard/ShuffleNet
code: unofficial-keras : https://github.com/scheckmedia/keras-shufflenet
CondenseNet An Efficient DenseNet using Learned Group Convolutions
Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger
pdf: https://arxiv.org/abs/1711.09224
code: official : https://github.com/ShichenLiu/CondenseNet
code: unofficial-tensorflow : https://github.com/markdtw/condensenet-tensorflow
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le
pdf: https://arxiv.org/abs/1707.07012
code: unofficial-keras : https://github.com/titu1994/Keras-NASNet
code: keras-applications : https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py
code: unofficial-pytorch : https://github.com/wandering007/nasnet-pytorch
code: unofficial-tensorflow : https://github.com/yeephycho/nasnet-tensorflow
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
pdf: https://arxiv.org/abs/1801.04381
code: unofficial-keras : https://github.com/xiaochus/MobileNetV2
code: unofficial-pytorch : https://github.com/Randl/MobileNetV2-pytorch
code: unofficial-tensorflow : https://github.com/neuleaf/MobileNetV2
IGCV2: Interleaved Structured Sparse Convolutional Neural Networks
Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi
pdf: https://arxiv.org/abs/1804.06202
Hierarchical Representations for Efficient Architecture Search
Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu
pdf: https://arxiv.org/abs/1711.00436
Progressive Neural Architecture Search
Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy
pdf: https://arxiv.org/abs/1712.00559
code: tensorflow-slim : https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py
code: unofficial-pytorch : https://github.com/chenxi116/PNASNet.pytorch
code: unofficial-tensorflow : https://github.com/chenxi116/PNASNet.TF
Regularized Evolution for Image Classifier Architecture Search
Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le
pdf: https://arxiv.org/abs/1802.01548
code: tensorflow-tpu : https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
Squeeze-and-Excitation Networks
Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
pdf: https://arxiv.org/abs/1709.01507
code: official : https://github.com/hujie-frank/SENet
code: unofficial-pytorch : https://github.com/moskomule/senet.pytorch
code: unofficial-tensorflow : https://github.com/taki0112/SENet-Tensorflow
code: unofficial-caffe : https://github.com/shicai/SENet-Caffe
code: unofficial-mxnet : https://github.com/bruinxiong/SENet.mxnet
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun
pdf: https://arxiv.org/abs/1807.11164
code: unofficial-pytorch :https://github.com/Randl/ShuffleNetV2-pytorch
code: unofficial-keras : https://github.com/opconty/keras-shufflenetV2
code:unofficial-pytorch : https://github.com/Bugdragon/ShuffleNet_v2_PyTorch
code: unofficial-caff2: https://github.com/wolegechu/ShuffleNetV2.Caffe2
IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang
pdf: https://arxiv.org/abs/1806.00178
code: official : https://github.com/homles11/IGCV3
code: unofficial-pytorch : https://github.com/xxradon/IGCV3-pytorch
code: unofficial-tensorflow : https://github.com/ZHANG-SHI-CHANG/IGCV3
MnasNet: Platform-Aware Neural Architecture Search for Mobile
Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le
pdf: https://arxiv.org/abs/1807.11626
code: unofficial-pytorch : https://github.com/AnjieZheng/MnasNet-PyTorch
code: unofficial-caffe : https://github.com/LiJianfei06/MnasNet-caffe
code: unofficial-MxNet : https://github.com/chinakook/Mnasnet.MXNet
code: unofficial-keras : https://github.com/Shathe/MNasNet-Keras-Tensorflow
Github 地址:
https://github.com/weiaicunzai/awesome-image-classification
-END-
专 · 知
专知《深度学习:算法到实战》课程全部完成!480+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
请加专知小助手微信(扫一扫如下二维码添加),咨询《深度学习:算法到实战》参团限时优惠报名~
欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程