【专知荟萃】自动驾驶知识资料全集(白皮书/报告/论文/综述/代码/数据/TUM课程讲解PPT及视频,附查看链接)

2022 年 1 月 25 日 专知

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!今天专知为大家呈送专知主题荟萃-自动驾驶知识资料全集荟萃 (白皮书/报告/论文/综述/代码/数据/TUM课程讲解PPT及视频链接等),请大家查看!专知访问www.zhuanzhi.ai,  或关注微信公众号后台回复" 专知"进入专知,搜索主题“自动驾驶”查看。欢迎转发分享!

    

专知荟萃-自动驾驶-目录

  • 白皮书

  • 中国信通院

  • IMT-2020(5G)推进组

  • 移动

  • 联通

  • 百度

  • 华为

  • 未来网络发展大会

  • 中国智能网联汽车产业创新联盟

  • 中国软件评测中心

  • 报告

  • 综述

  • 中文

  • 英文

  • 关键技术(原文、代码、视频、数据集链接)

  • 感知

  • 预测

  • 规则(人类先验知识)

  • 规划

  • 端到端

  • 安全

  • 伦理

  • 数据集

  • 教程

  • 慕尼黑工业大学TUM

  • 人工智能技术Artificial Intelligence in Automotive Technology

  • 01.引言

  • 02. 感知

  • 03.有监督学习-线性回归

  • 04. 有监督学习-分类

  • 05. 无监督学习-聚类

  • 06. 寻径

  • 07. 神经网络导论

  • 08. 深度神经网络

  • 09. 卷积神经网络

  • 10. 递归神经网络

  • 11. 强化学习

  • 12. AI开发

  • 13. Rasmus Rothe教授讲座

  • 自动驾驶软件工程Autonomous Driving Software Engineering

  • 01. 介绍

  • 02. 感知一

  • 03. 感知二

  • 04. 感知三

  • 05. 预测

  • 06. 全局规划

  • 07. 局部规划

  • 08. 控制

  • 09. 安全评估

  • 10. 遥控驾驶

  • 11. 端到端

  • 12. 人为因素

  • 百度Apollo

  • 模块学习

  • 课程学习

  • 入门课程

  • 进阶课程

  • 开发平台文档

  • 麻省理工MIT

专知荟萃-自动驾驶-内容

白皮书

中国信通院

  1. 2021.12,《车联网白皮书》,44页,中国信息通信研究院,http://www.caict.ac.cn/kxyj/qwfb/bps/202112/P020211224634954242855.pdf

  2. 2020.12,《车联网白皮书(网联自动驾驶分册)》,44页,中国信息通信研究院,http://pg.jrj.com.cn/acc/Res/CN_RES/INDUS/2020/12/17/1019396a-208c-434e-b8b2-1a97e1648526.pdf

  3. 2019.12,《车联网白皮书(C-V2X白皮书)》,47页,中国信息通信研究院、国泰君安证券股份有限公司,http://www.caict.ac.cn/kxyj/qwfb/bps/201912/P020191226516585677051.pdf

  4. 2019.12,《车联网白皮书(2018年)》,35页,中国信息通信研究院、http://www.caict.ac.cn/kxyj/qwfb/bps/201812/P020181218510826089278.pdf

  5. 2017.9,《车联网白皮书(2017年)》,37页,中国信息通信研究院、华为技术有限公司、电信科学技术研究院,http://www.caict.ac.cn/kxyj/qwfb/bps/201804/P020170928592209280350.pdf

  6. 2017.9,《车联网网络安全白皮书(2017年)》,41页,中国信息通信研究院,http://www.caict.ac.cn/kxyj/qwfb/bps/201804/P020170921430215345026.pdf

IMT-2020(5G)推进组

  1. 2019.10,《C-V2X业务需求演进白皮书》,25页,IMT-2020(5G)推进组,http://www.caict.ac.cn/kxyj/qwfb/bps/201911/P020191104336556097939.pdf

  2. 2019.10,《车辆高精度定位白皮书》,23页,IMT-2020 (5G)推进组,http://www.caict.ac.cn/kxyj/qwfb/bps/201911/P020200911551988189402.pdf

  3. 2019.7,《LTE-V2X安全技术》,25页,IMT-2020 (5G)推进组,http://zhishi.sae-china.org/read/?id=1922#page=3

  4. 2019.1,《MEC与C-V2X融合 应用场景》,19页,IMT-2020 (5G)推进组,http://m.caict.ac.cn/yjcg/201901/P020190123572024553363.pdf

  5. 2018.6,《C-V2X》,33页,IMT-2020 (5G)推进组,http://www.caict.ac.cn/kxyj/qwfb/bps/201806/P020180621609834833905.pdf

移动

  1. 2021,《中国移动自动驾驶网络白皮书》,中国移动,https://kxlabs.10086.cn/files/1626350861865-520854.pdf

联通

  1. 2021,《5G+MEC+V2X 车联网解决方案 白皮书》,32页,中国联合网络通信集团有限公司、联想,http://www.future-forum.org/cn/leon/a/upfiles/file/202104/20210414164624972497.pdf

百度

  1. 2021.12,《自动驾驶汽车交通安全白皮书》,74页,中汽中心、同济大学、百度Apollo,https://apollo-open.bj.bcebos.com/20211215/%E8%87%AA%E5%8A%A8%E9%A9%BE%E9%A9%B6%E6%B1%BD%E8%BD%A6%E4%BA%A4%E9%80%9A%E5%AE%89%E5%85%A8%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf

  2. 2019,《自动驾驶安全第一白皮书》,157页,百度、安波福、宝马、奥迪等,https://www.bjhzhz.com/ueditor/php/upload/file/20210611/1623382005549714.pdf

华为

  1. 2021.7,《华为数据中心自动驾驶网络白皮书》,27页,华为,https://www.chenxiaofang.site/wp-content/uploads/2021/07/%E5%8D%8E%E4%B8%BA%E6%95%B0%E6%8D%AE%E4%B8%AD%E5%BF%83%E8%87%AA%E5%8A%A8%E9%A9%BE%E9%A9%B6%E7%BD%91%E7%BB%9C%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf

  2. 2021.6,《数据中心基础设施智能化分级(自动驾驶)》,32页,华为,https://www.eet-china.com/d/file/news/2021-06-09/2b6c4c1c8f18254c9e5fdd398e5b905a.pdf

  3. 2020,《自动驾驶网络解决方案白皮书》,80页,华为,https://carrier.huawei.com/~/media/CNBGV2/download/adn/Autonomous-Driving-Network-whitepaper-cn1.pdf

未来网络发展大会

  1. 2021.12,《未来网络白皮书——数据中心自动驾驶网络技术白皮书,2021版》,52页,第五届未来网络发展大会组委会,https://img1.sdnlab.com/wp-content/uploads/2021/06/21/whitepaper-%E6%9C%AA%E6%9D%A5%E7%BD%91%E7%BB%9C%E7%99%BD%E7%9A%AE%E4%B9%A6%E2%80%94%E2%80%94%E6%95%B0%E6%8D%AE%E4%B8%AD%E5%BF%83%E8%87%AA%E5%8A%A8%E9%A9%BE%E9%A9%B6%E7%BD%91%E7%BB%9C%E6%8A%80%E6%9C%AF%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf

中国智能网联汽车产业创新联盟

  1. 2021.5,《智能网联汽车高精度卫星定位白皮书》,152页,中国智能网联汽车产业创新联盟,http://www.china-icv.cn/upload/2021/07/12/16260536514901daijd.pdf

  2. 2021.5,《智能网联汽车高精地图白皮书》,147页,中国智能网联汽车产业创新联盟,http://www.china-icv.cn/upload/2021/07/12/16260536764054a4d6l.pdf

中国软件评测中心

  1. 2020.12,《车载智能计算平台功能安全白皮书》,152页,中国软件评测中心,https://www.cstc.org.cn/chezaizhinengjisuanpingtaigongnenganquanbaipishu.pdf

报告

  1. 2022.1.17,维多利亚运输政策研究所,Autonomous Vehicle Implementation Predictions:Implications for Transport Planning,48页。许多决策者和从业者都想知道,自动驾驶汽车(AVs)将如何影响未来的出行,进而影响对道路、停车设施和公共交通服务的需求,以及哪些公共政策可以将这些新技术的问题最小化,并使其效益最大化。本报告探讨了这些问题。https://www.vtpi.org/avip.pdf

  2. 2021,2021年全球自动驾驶汽车指南Global Guide to Autonomous Vehicles,http://www.thedriverlesscommute.com/wp-content/uploads/2021/02/Global-Guide-to-Autonomous-Vehicles-2021.pdf

  3. 2021.7,《车载计算平台标准化需求研究报告》,全国汽车标准化技术委员会、智能网联汽车分技术委员会,http://www.catarc.org.cn/upload/202109/22/202109221132155975.pdf

  4. 2021.3,《自动驾驶产业链全梳理》,西南证券研究发展中心,https://pdf.dfcfw.com/pdf/H3_AP202103111470672485_1.pdf?1615459588000.pdf

  5. 2021.1,《自动驾驶驶向何方?》:自动驾驶市场、技术路径、产业发展、投资建议,国金证券,http://qccdata.qichacha.com/ReportData/PDF/df94319e701b86a7594a93bfe1d498ce.pdf

  6. 2020.11.11,《ETC驶向V2X,智慧交通龙头“驾轻就熟”》,32页,开源证券,https://pdf.dfcfw.com/pdf/H3_AP202011151429330007_1.pdf?1605434112000.pdf

  7. 2020.5.24,《标准临近叠加新基建助力,C-V2X 产业元年开启 ——C-V2X 行业深度报告》,30页,光大证券,https://pdf.dfcfw.com/pdf/H3_AP202005241380177659_1.pdf?1590355566000.pdf

综述

中文

  1. 2021.3,广西大学“面向自动驾驶的边缘计算技术研究综述”,19页,通信学报。介绍了基于边缘计算的自动驾驶汽车协同感知和任务卸载技术及相关挑战性问题,然后对协同感知和任务卸载技术的研究现状进行了分析总结。
    论文原链接http://www.infocomm-journal.com/txxb/CN/article/downloadArticleFile.do?attachType=PDF&id=171291

  2. 2021.1,天津大学“自动驾驶智能系统测试研究综述”,22页,软件学报。本文调研了56 篇相关领域的学术论文,分别就感知模块、决策模块、综合功能模块及整车系统的测试技术、用例生成方法和测试覆盖度量等维度对目前已有的研究成果进行了梳理,并描述了自动驾驶智能系统测试中的数据集及工具集。
    论文原链接http://www.jos.org.cn/jos/article/pdf/6266?file_name=94B86F4BF0497EAE17A5F0D9F6591B963D17D220AD266E9D8F92E4FB76E0CA8E75A6D437C61027970688673CAEBCF9FB&open_type=self

英文

  1. 2022.1.19,科罗拉多州立大学,Object Detection in Autonomous Vehicles: Status and Open Challenges。
    论文原链接https://arxiv.org/ftp/arxiv/papers/2201/2201.07706.pdf

  2. 2022.1,法国雷恩第一大学,Adversarial Example Detection for DNN Models: A Review and Experimental Comparison。
    论文原链接https://arxiv.org/pdf/2105.00203v2.pdf
    代码https://github.com/aldahdooh/detectors_review

  3. 2021.12,加拿大Alberta大学、华为发表自动驾驶可解释AI的综述论文,“Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions”,arXiv。该研究为开发自动驾驶车辆的可解释人工智能(XAI)方法提供了全面的信息。首先,概述了目前最先进的自动驾驶汽车行业在可解释方面存在的差距。然后,展示该领域中可解释和可解释受众的分类。第三,提出了一个端到端自动驾驶系统体系结构的框架,并论证了XAI在调试和调控此类系统中的作用。
    论文原链接https://arxiv.org/pdf/2112.11561.pdf

  4. 2021.2,法国Navya无人驾驶公司,Deep reinforcement learning for autonomous driving: A survey, IEEE Transactions on Intelligent Transportation Systems。
    论文原链接https://arxiv.org/pdf/2002.00444.pdf

  5. 2020.7,深度学习自动驾驶技术综述论文,“Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies”,28页,arXiv。研究了自动驾驶系统的主要领域,如感知、地图和定位、预测、规划和控制、仿真、V2X和安全等。重点分析几个关键领域,即感知中的二维/三维物体检测、摄像机深度估计、数据、特征和任务级的多传感器融合、车辆行驶和行人轨迹的行为建模和预测
    论文原链接https://arxiv.org/ftp/arxiv/papers/2006/2006.06091.pdf

  6. 2020.3,日本名古屋大学自动驾驶领域顶级专家(Senior Member, IEEE),“A Survey of Autonomous Driving: Common Practices and Emerging Technologies”,28页,IEEE Access。本文讨论了无人驾驶技术中尚未解决的问题,并对无人驾驶技术进行了综述。对目前的挑战、高级系统架构、新兴方法和核心功能(包括定位、映射、感知、规划和人机界面)的研究进行了全面回顾。此外,在自己的平台上实现了许多最先进的算法,并在真实世界的驾驶环境中进行了比较。最后概述了ADS开发中可用的数据集和工具。
    论文原链接https://arxiv.org/pdf/1906.05113.pdf

关键技术(原文、代码、视频、数据集链接)

感知

  1. 2021.11,中山大学,“基于多对多生成对抗网络的非对称跨域迁移行人再识别”,自动化学报。
    论文原链接http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190303

  2. 2021.10,广西大学,“无人驾驶汽车协同感知信息传输负载优化技术”,计算机学报。本文提出了一种视频感知数据的传输负载优化方法,主要思想是通过路边基础设施把视频帧中的静态背景与动态前景进行分离,仅在初始时传输一次静态背景,其余每次仅传输动态前景信息,这样可以使得传输负载大幅降低。
    论文原链接http://cjc.ict.ac.cn/online/onlinepaper/lp-x-20211014145533.pdf

  3. 2021.5,中南大学,“基于可见光与红外热图像的行车环境复杂场景分割”,自动化学报。
    论文原链接http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c210029

  4. 2022.1.18,采埃孚印度技术中心,Contextual road lane and symbol generation for autonomous driving。
    论文原链接https://arxiv.org/pdf/2201.07120.pdf

  5. 2022.1.18,法国南特大学,Attention-based Proposals Refinement for 3D Object Detection。
    论文原链接https://arxiv.org/pdf/2201.07070.pdf

  6. 2022.1.17,加州大学欧文分校, HydraFusion: Context-Aware Selective Sensor Fusion for Robust and Efficient Autonomous Vehicle Perception,13th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2022)。
    论文原链接https://arxiv.org/pdf/2201.06644.pdf
    代码https://github.com/aicps/hydrafusion

  7. 2021.10,麻省理工学院,Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs,arxiv。
    论文原链接https://arxiv.org/pdf/2101.06894.pdf ,
    代码https://github.com/MIT-SPARK/Kimera ,
    视频Video 1: https://youtu.be/-5XxXRABXJs,Video 2: https://youtu.be/SWbofjhyPzI。

  8. 2020.7,麻省理工学院,Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping,ICRA 2020。
    论文原链接https://arxiv.org/pdf/1910.02490.pdf ,
    代码https://github.com/MIT-SPARK/Kimera,https://paperswithcode.com/paper/kimera-an-open-source-library-for-real-time,
    视频https://www.youtube.com/watch?v=-5XxXRABXJs

  9. 2020.6,麻省理工学院,3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans,Robotics: Science and Systems (RSS)。
    论文原链接https://arxiv.org/pdf/2002.06289.pdf ,
    代码https://paperswithcode.com/paper/3d-dynamic-scene-graphs-actionable-spatial,
    视频https://www.youtube.com/watch?v=SWbofjhyPzI

  10. 2019.7,麻省理工学院,Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities,ICRA 2019。
    论文原链接https://arxiv.org/pdf/1903.01067.pdf ,
    代码https://github.com/MIT-SPARK/Kimera,https://paperswithcode.com/paper/incremental-visual-inertial-3d-mesh
    论文7-10为同一作者成果

  11. 2021.10,英国埃塞克斯大学、荷兰代尔夫特理工大学、昆士兰科技大学,VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework with Quantifiable Viewpoint and Appearance Change。
    论文原链接https://arxiv.org/pdf/2005.08135v2.pdf
    代码:https://github.com/MubarizZaffar/VPR-Bench

  12. 2021.10,韩国延世大学,Robust Lane Detection via Expanded Self Attention,IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022。
    论文原链接https://arxiv.org/pdf/2102.07037v3.pdf,
    代码https://github.com/Hydragon516/ESA-official

  13. 2021.10,瑞典RISE研究院、瑞典隆德大学,Efficient and Effective Generation of Test Cases for Pedestrian Detection -- Search-based Software Testing of Baidu Apollo in SVL,AITest 2021。
    论文原链接https://arxiv.org/pdf/2109.07960v2.pdf,
    代码https://github.com/ebadi/scenariogenerator

  14. 2021.9,哈尔滨工业大学(Senior Member, IEEE),Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes。
    论文原链接https://arxiv.org/pdf/2101.06085v2.pdf ,
    代码https://github.com/ydhongHIT/DDRNet

  15. 2021.8,爱丁堡大学,GRIT: Fast, Interpretable, and Verifiable Goal Recognition with Learned Decision Trees for Autonomous Driving,2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)。
    论文原链接https://arxiv.org/pdf/2103.06113v3.pdf
    代码https://github.com/uoe-agents/GRIT

  16. 2021.4,西班牙塞维利亚大学,Enhancing Object Detection for Autonomous Driving by Optimizing Anchor Generation and Addressing Class Imbalance,Neurocomputing (2021)。
    论文原链接https://arxiv.org/pdf/2104.03888v1.pdf
    代码https://github.com/carranza96/waymo-detection-optimization

  17. 2021.4,俄罗斯Evocargo LLC,Raindrops on Windshield: Dataset and Lightweight Gradient-Based Detection Algorithm。
    论文原链接https://arxiv.org/pdf/2104.05078v1.pdf
    代码https://github.com/EvoCargo/RaindropsOnWindshield

  18. 2021.3,多伦多大学机器人研究所,Categorical Depth Distribution Network for Monocular 3D Object Detection。
    论文原链接https://arxiv.org/pdf/2103.01100v2.pdf ,
    代码https://github.com/TRAILab/CaDDN

  19. 2021.3,香港科技大学,Video Deblurring by Fitting to Test Data。
    论文原链接https://arxiv.org/pdf/2012.05228v2.pdf ,
    代码https://github.com/xrenaa/Deblur-by-Fitting

  20. 2021.2,美国密歇根大学,LiDARTag: A Real-Time Fiducial Tag System for Point Clouds。
    论文原链接https://arxiv.org/pdf/1908.10349.pdf,
    代码https://github.com/UMich-BipedLab/LiDARTag。

  21. 2021.2,深圳市人工智能与机器人研究院、香港中文大学,Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global Localization in Large Scale Environment,IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION。
    论文原链接https://arxiv.org/pdf/2010.09297v2.pdf ,
    代码https://repository.tudelft.nl/islandora/object/uuid:af94d535-1853-4a6c-8b3f-77c98a52346a?collection=research,
    数据集http://www.cvlibs.net/datasets/kitti/,https://synthia-dataset.net/,https://github.com/Microsoft/AirSim

  22. 2020.10,法国格勒诺布尔大学,GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation for Autonomous Vehicles,IEEE/RSJ International Conference on Intelligent Robots and Systems。
    论文原链接https://hal.inria.fr/hal-02927350/document
    代码https://github.com/anshulpaigwar/GndNet

  23. 2020.8,清华大学,DXSLAM: A Robust and Efficient Visual SLAM System with Deep Features。
    论文原链接https://arxiv.org/pdf/2008.05416v1.pdf ,
    代码https://github.com/ivipsourcecode/dxslam

  24. 2020.7,香港科技大学,GSNet: Joint Vehicle Pose and Shape Reconstruction with Geometrical and Scene-aware Supervision,ECCV 2020。
    论文原链接https://arxiv.org/pdf/2007.13124v1.pdf ,
    代码https://github.com/lkeab/gsnet

  25. 2020.6,奔驰、乌尔姆大学、普林斯顿大学等,Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather,CVPR2020。
    论文原链接https://arxiv.org/pdf/1902.08913.pdf ,
    代码https://github.com/princeton-computational-imaging/SeeingThroughFog

  26. 2020.5,慕尼黑工业大学,Persistent Map Saving for Visual Localization for Autonomous Vehicles: An ORB-SLAM Extension,EVER2020。
    论文原链接https://arxiv.org/pdf/2005.07429v1.pdf,
    代码https://github.com/TUMFTM/orbslam-map-saving-extension

  27. 2020.4,武汉大学,Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks,IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY。
    论文原链接https://arxiv.org/pdf/1903.02193v2.pdf,
    代码https://github.com/qinnzou/Robust-Lane-Detection

  28. 2020.3,剑桥大学,PaRoT: A Practical Framework for Robust Deep Neural Network Training,22页,12th NASA Formal Methods Symposium。
    论文原链接https://arxiv.org/pdf/2001.02152v3.pdf
    代码https://github.com/fiveai/parot

  29. 2020.2,斯坦福大学,Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices,NeurIPS 2019。
    论文原链接https://arxiv.org/pdf/1909.06349v2.pdf ,
    代码https://github.com/snorkel-team/snorkel-tutorials

  30. 2020.2,德国戴姆勒公司、德国卡尔斯鲁厄理工学院,CNN-based Lidar Point Cloud De-Noising in Adverse Weather。
    论文原链接https://arxiv.org/pdf/1912.03874v2.pdf ,
    代码https://github.com/rheinzler/PointCloudDeNoising

  31. 2020.2,卡耐基梅隆大学,Learning to Move with Affordance Maps,ICLR 2020。
    论文原链接https://arxiv.org/pdf/2001.02364v2.pdf
    代码https://github.com/wqi/A2L

  32. 2020.1,中科院沈阳自动化研究所研究所、中国科学院机器人与智能制造研究所等RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving。
    论文原链接https://arxiv.org/pdf/2001.03343v1.pdf ,
    代码https://github.com/Banconxuan/RTM3D

  33. 2019.7,意大利博洛尼亚大学、帕尔马大学,Lane Detection and Classification using Cascaded CNNs。
    论文原链接https://arxiv.org/pdf/1907.01294v2.pdf
    代码https://github.com/fabvio/Cascade-LD,https://github.com/fabvio/TuSimple-lane-classes

  34. 2019.10,加拿大约克大学,PIE: A Large-Scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction,ICCV 2019。
    论文原链接https://openaccess.thecvf.com/content_ICCV_2019/papers/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.pdf,
    代码https://github.com/aras62/PIEPredict

  35. 2019.8,旷世研究院、清华大学等,Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection。
    论文原链接https://arxiv.org/pdf/1908.09492v1.pdf ,
    代码https://github.com/poodarchu/Class-balanced-Grouping-and-Sampling-for-Point-Cloud-3D-Object-Detection

  36. 2019.7,巴西圣埃斯皮里图联邦大学(Senior Member, IEEE),Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night。
    论文原链接https://arxiv.org/pdf/1907.08719v1.pdf
    代码https://github.com/LCAD-UFES/publications-arruda-ijcnn-2019

  37. 2019.5,乔治亚理工学院、英特尔,ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector。
    论文原链接https://arxiv.org/pdf/1804.05810v3.pdf,
    代码https://github.com/shangtse/robust-physical-attack

  38. 2017.5,高精地图,Highiy Efficient HD Map Creation: Acceierating Mapping Process with GPUs,40页PPT。
    原链接https://on-demand.gputechconf.com/gtc/2017/presentation/s7656-shigeyuki-iwata-accelerating-hd-mapping.pdf


    特别提示-完整版自动驾驶主题查看:

    请PC登录www.zhuanzhi.ai或者点击阅读原文注册登录,顶端搜索“自动驾驶” 主题,直接PC端访问体验更佳!如下图所示~






    更多专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:


    专知便捷查看

    便捷下载,请关注专知公众号(点击上方蓝色专知关注)

    • 后台回复“自动驾驶” 就可以获取自动驾驶知识资料全集(白皮书/报告/论文/综述/代码/数据/TUM课程讲解PPT及视频,附查看链接)》专知下载链接


    专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI主题干货知识资料!


    欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
    点击“ 阅读原文 ”,了解使用 专知 ,查看获取70000+AI主题知识资源
    登录查看更多
    5

    相关内容

    慕尼黑工业大学(Technische Universität München),位于拜仁州(Bayern)首府慕尼黑(München),是德国拜仁州唯一的一所理工类大学。在校生约38000人,是德国最大的理工高校之一。属于德国理工九所(TU9)、精英大学(Eliteuniversitäten),是国际上声名显赫的顶尖德国院校。 校内设有154个专业,核心领域为自然科学、工程科学、医学及生命科学。此外还设有经济学、数学与信息学、体育与健康科学、教育学及建筑学专业。
    车联网创新生态发展报告(33页可下载)
    专知会员服务
    31+阅读 · 2022年2月1日
    2021年中国人工智能基础层行业发展研究报告,60页pdf
    专知会员服务
    68+阅读 · 2021年9月3日
    最新《深度学习自动驾驶》技术综述论文,28页pdf
    专知会员服务
    153+阅读 · 2020年6月14日
    【综述】自动驾驶领域中的强化学习,附18页论文下载
    专知会员服务
    172+阅读 · 2020年2月8日
    最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
    智能交通大数据最新论文综述-附PDF下载
    专知会员服务
    104+阅读 · 2019年12月25日
    深度学习视频中多目标跟踪:论文综述
    专知会员服务
    92+阅读 · 2019年10月13日
    国家自然科学基金
    3+阅读 · 2014年12月31日
    国家自然科学基金
    0+阅读 · 2013年12月31日
    国家自然科学基金
    1+阅读 · 2013年12月31日
    国家自然科学基金
    3+阅读 · 2012年12月31日
    国家自然科学基金
    0+阅读 · 2012年12月31日
    国家自然科学基金
    2+阅读 · 2012年12月31日
    国家自然科学基金
    5+阅读 · 2012年12月31日
    国家自然科学基金
    1+阅读 · 2011年12月31日
    国家自然科学基金
    0+阅读 · 2011年12月31日
    国家自然科学基金
    0+阅读 · 2009年12月31日
    Arxiv
    0+阅读 · 2022年4月19日
    Arxiv
    64+阅读 · 2021年6月18日
    Self-Driving Cars: A Survey
    Arxiv
    41+阅读 · 2019年1月14日
    VIP会员
    相关VIP内容
    车联网创新生态发展报告(33页可下载)
    专知会员服务
    31+阅读 · 2022年2月1日
    2021年中国人工智能基础层行业发展研究报告,60页pdf
    专知会员服务
    68+阅读 · 2021年9月3日
    最新《深度学习自动驾驶》技术综述论文,28页pdf
    专知会员服务
    153+阅读 · 2020年6月14日
    【综述】自动驾驶领域中的强化学习,附18页论文下载
    专知会员服务
    172+阅读 · 2020年2月8日
    最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
    智能交通大数据最新论文综述-附PDF下载
    专知会员服务
    104+阅读 · 2019年12月25日
    深度学习视频中多目标跟踪:论文综述
    专知会员服务
    92+阅读 · 2019年10月13日
    相关资讯
    相关基金
    国家自然科学基金
    3+阅读 · 2014年12月31日
    国家自然科学基金
    0+阅读 · 2013年12月31日
    国家自然科学基金
    1+阅读 · 2013年12月31日
    国家自然科学基金
    3+阅读 · 2012年12月31日
    国家自然科学基金
    0+阅读 · 2012年12月31日
    国家自然科学基金
    2+阅读 · 2012年12月31日
    国家自然科学基金
    5+阅读 · 2012年12月31日
    国家自然科学基金
    1+阅读 · 2011年12月31日
    国家自然科学基金
    0+阅读 · 2011年12月31日
    国家自然科学基金
    0+阅读 · 2009年12月31日
    Top
    微信扫码咨询专知VIP会员