点击上方“专知”关注获取更多AI知识!
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第九篇专知主题荟萃-目标检测知识资料大全集荟萃 (入门/进阶/论文/综述/视频/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复" 专知"进入专知,搜索主题“目标检测”查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家分享转发~
了解专知,专知,一个新的认知方式!
入门学习
进阶文章
综述
Tutorial
视频教程
代码
领域专家
图像目标检测(Object Detection)原理与实现 (1-6)
[http://www.voidcn.com/article/p-xnjyqlkj-ua.html]
[http://www.voidcn.com/article/p-ypylfzuk-ua.html]
[http://www.voidcn.com/article/p-pfihszbt-ua.html]
[http://www.voidcn.com/article/p-hcvjcaqy-ua.html]
[http://www.voidcn.com/article/p-kjogyjfz-ua.html]
[http://www.voidcn.com/article/p-zqfjjomb-u.html]
. 基于特征共享的高效物体检测 Faster R-CNN和ResNet的作者任少卿 博士毕业论文 中文
[https://pan.baidu.com/s/1gfxTbNl]
R-CNN:论文笔记
[http://www.cnblogs.com/kingstrong/p/4969472.html], [http://blog.gater.vip/articles/2015/11/02/1478607351098.html]
Fast-RCNN:
深度学习物体检测(三)——FAST-RCNN:
[http://www.itwendao.com/article/detail/374785.html]
Fast-RCNN:[https://zhuanlan.zhihu.com/p/24780395]
Faster-RCNN:
[http://blog.csdn.net/zy1034092330/article/details/62044941]
FPN:
Feature Pyramid Networks for Object Detection 论文笔记:
[http://blog.csdn.net/jesse_mx/article/details/54588085]
CVPR 2017论文解读:特征金字塔网络FPN:
[http://www.sohu.com/a/159780794_465975]
FPN(feature pyramid networks)算法讲解:
[http://blog.csdn.net/u014380165/article/details/72890275]
R-FCN:
基于区域的全卷积网络来检测物体:
[http://blog.csdn.net/shadow_guo/article/details/51767036]
[译] 基于R-FCN的物体检测:
[http://www.jianshu.com/p/db1b74770e52]
SSD:
Single Shot MultiBox Detector论文阅读:
[http://blog.csdn.net/u010167269/article/details/52563573]
【深度学习:目标检测】RCNN学习笔记(10):SSD:Single Shot MultiBox Detector:
[http://blog.csdn.net/smf0504/article/details/52745070]
翻译SSD论文(Single Shot MultiBox Detector),仅作交流:
[http://blog.csdn.net/Ai_Smith/article/details/52997456?locationNum=2&fps=1]
CNN目标检测与分割(三):SSD详解:
[http://blog.csdn.net/zy1034092330/article/details/72862030]
SSD关键源码解析:
[https://zhuanlan.zhihu.com/p/25100992]
YOLO:
YOLO:实时快速目标检测:
[https://zhuanlan.zhihu.com/p/25045711]
YOLO详解: [https://zhuanlan.zhihu.com/p/25236464]
YOLO升级版:YOLOv2和YOLO9000解析:
[https://zhuanlan.zhihu.com/p/29816334]
YOLO升级版:YOLOv2和YOLO9000解析:
[https://zhuanlan.zhihu.com/p/29816334]
YOLO v2之总结篇(linux+windows):
[http://blog.csdn.net/qq_14845119/article/details/53589282]
YOLOv2 论文笔记:
[http://blog.csdn.net/jesse_mx/article/details/53925356]
DenseBox:余凯特邀报告:基于密集预测图的物体检测技术造就全球领先的ADAS系统
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - [http://www.cnblogs.com/xueyuxiaolang/p/5959442.html]
深度学习论文笔记:DSSD - [http://jacobkong.github.io/posts/2938514597/]
DSOD
复旦大学Ph.D沈志强:用于目标检测的DSOD模型(ICCV 2017) | 分享总结:
[http://www.sohu.com/a/198226907_114877]
目标检测--DSOD: Learning Deeply Supervised Object Detectors from Scratch:
[http://blog.csdn.net/zhangjunhit/article/details/77247695]
Focal Loss:
Focal Loss:
[http://blog.csdn.net/u014380165/article/details/77019084]
读Focal Loss:
[https://zhuanlan.zhihu.com/p/28873248]
Soft-NMS:
一行代码改进NMS:
[http://blog.csdn.net/shuzfan/article/details/71036040]
OHEM:
论文笔记 OHEM: Training Region-based Object Detectors with Online Hard Example Mining:
[http://blog.csdn.net/u012905422/article/details/52760669]
Mask-RCNN 2017:
Mask-RCNN 2017:
[http://blog.csdn.net/inuchiyo_china/article/details/70860939]
目标检测分割--Mask R-CNN:
[http://blog.csdn.net/zhangjunhit/article/details/64920075?locationNum=6&fps=1]
解读|Facebook 何凯明发大招:Mask R-CNN 狙击目标实例分割:
[http://www.sohu.com/a/130676187_642762]
目标检测之比较
目标检测之RCNN,SPP-NET,Fast-RCNN,Faster-RCNN:
[http://lanbing510.info/2017/08/24/RCNN-FastRCNN-FasterRCNN.html]
RCNN, Fast-RCNN, Faster-RCNN的一些事:
[http://closure11.com/rcnn-fast-rcnn-faster-rcnn%E7%9A%84%E4%B8%80%E4%BA%9B%E4%BA%8B/]
机器视觉目标检测补习贴之R-CNN系列 — R-CNN, Fast R-CNN, Faster R-CNN , 目标检测补习贴之YOLO实时检测, You only look once :
[http://nooverfit.com/wp/]
目标检测算法:RCNN、YOLO vs DPM:
[https://juejin.im/entry/59564e1f6fb9a06b9c7408f9]
如何评价rcnn、fast-rcnn和faster-rcnn这一系列方法?:
[https://www.zhihu.com/question/35887527]
视觉目标检测和识别之过去,现在及可能
[https://zhuanlan.zhihu.com/p/27546796]
Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:
[https://cis.temple.edu/~yuhong/teach/2014_spring/papers/NIPS2013_DNN_OD.pdf]
R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation:
[https://arxiv.org/abs/1311.2524]
Fast R-CNN :
[http://arxiv.org/abs/1504.08083]
Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:
[http://arxiv.org/abs/1506.01497]
Scalable Object Detection using Deep Neural Networks
[http://arxiv.org/abs/1312.2249]
Scalable, High-Quality Object Detection
[http://arxiv.org/abs/1412.1441]
SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
[http://arxiv.org/abs/1406.4729]
DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
[http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html]
Object Detectors Emerge in Deep Scene CNNs
[http://arxiv.org/abs/1412.6856]
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
[https://arxiv.org/abs/1502.04275]
Object Detection Networks on Convolutional Feature Maps
[http://arxiv.org/abs/1504.06066]
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
[http://arxiv.org/abs/1504.03293]
DeepBox: Learning Objectness with Convolutional Networks
[http://arxiv.org/abs/1504.03293]
Object detection via a multi-region & semantic segmentation-aware CNN model
[http://arxiv.org/abs/1505.01749]
You Only Look Once: Unified, Real-Time Object Detection
[http://arxiv.org/abs/1506.02640]
YOLOv2 YOLO9000: Better, Faster, Stronger
[https://arxiv.org/abs/1612.08242]
AttentionNet: Aggregating Weak Directions for Accurate Object Detection
[http://arxiv.org/abs/1506.07704]
DenseBox: Unifying Landmark Localization with End to End Object Detection
[http://arxiv.org/abs/1509.04874]
SSD: Single Shot MultiBox Detector
[http://arxiv.org/abs/1512.02325]
DSSD : Deconvolutional Single Shot Detector
[https://arxiv.org/abs/1701.06659]
G-CNN: an Iterative Grid Based Object Detector
[http://arxiv.org/abs/1512.07729]
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
[http://arxiv.org/abs/1604.00600]
A MultiPath Network for Object Detection
[http://arxiv.org/abs/1604.02135]
R-FCN: Object Detection via Region-based Fully Convolutional Networks
[http://arxiv.org/abs/1605.06409]
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
[http://arxiv.org/abs/1607.07155]
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
[http://arxiv.org/abs/1608.08021]
Feature Pyramid Networks for Object Detection
[https://arxiv.org/abs/1612.03144]
Learning Chained Deep Features and Classifiers for Cascade in Object Detection
[https://arxiv.org/abs/1702.07054]
DSOD: Learning Deeply Supervised Object Detectors from Scratch
[https://arxiv.org/abs/1708.01241]
Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research
[https://arxiv.org/abs/1708.02002]
Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research
http://arxiv.org/abs/1703.06870
深度学习之 "物体检测" 方法梳理
[http://zhwhong.ml/2017/02/24/Detection-CNN/]
地平线黄李超开讲:深度学习和物体检测!:
[http://www.sohu.com/a/163460329_642762]
对话CVPR2016:目标检测新进展:
[https://zhuanlan.zhihu.com/p/21533724]
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:
[http://www.cnblogs.com/skyfsm/p/6806246.html]
基于深度学习的目标检测研究进展
讲堂干货No.1|山世光-基于深度学习的目标检测技术进展与展望
CVPR'17 Tutorial Deep Learning for Objects and Scenes by Kaiming He Ross Girshick
[http://deeplearning.csail.mit.edu/]
ICCV 2015 Tools for Efficient Object Detection
[http://mp7.watson.ibm.com/ICCV2015/ObjectDetectionICCV2015.html]
Object Detection
[http://class.inrialpes.fr/tutorials/triggs-icvss1.pdf]
Image Recognition and Object Detection : Part 1
[https://www.learnopencv.com/image-recognition-and-object-detection-part1/]
R-CNN for Object Detection
[https://courses.cs.washington.edu/courses/cse590v/14au/cse590v_wk1_rcnn.pdf\]
cs231 第11讲 Detection and Segmentation
PPT :[http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf\] 视频:[https://www.youtube.com/watch?v=nDPWywWRIRo&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv]
Deep Learning for Instance-level Object Understanding by Ross Girshick.
PPT:[http://deeplearning.csail.mit.edu/instance_ross.pdf\]
视频:[https://youtu.be/jHv37mKAhV4?t=2349]
R-CNN
[https://github.com/rbgirshick/rcnn]
Fast R-CNN:
[https://github.com/rbgirshick/fast-rcnn]
github("Fast R-CNN in MXNet"): https://github.com/precedenceguo/mx-rcnn
github: https://github.com/mahyarnajibi/fast-rcnn-torch
github: https://github.com/apple2373/chainer-simple-fast-rnn
github: https://github.com/zplizzi/tensorflow-fast-rcnn
Faster R-CNN
github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
github: https://github.com/rbgirshick/py-faster-rcnn
github: https://github.com/mitmul/chainer-faster-rcnn
github: https://github.com/andreaskoepf/faster-rcnn.torch
github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
github: https://github.com/smallcorgi/Faster-RCNN_TF
github: https://github.com/CharlesShang/TFFRCNN
github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
github: https://github.com/yhenon/keras-frcnn
SPP-Net
[https://github.com/ShaoqingRen/SPP_net\]
YOLO
github: https://github.com/gliese581gg/YOLO_tensorflow
github: https://github.com/xingwangsfu/caffe-yolo
github: https://github.com/frankzhangrui/Darknet-Yolo
github: https://github.com/BriSkyHekun/py-darknet-yolo
github: https://github.com/tommy-qichang/yolo.torch
github: https://github.com/frischzenger/yolo-windows
github: https://github.com/AlexeyAB/yolo-windows
github: https://github.com/nilboy/tensorflow-yolo
YOLOv2
github(Chainer): https://github.com/leetenki/YOLOv2
github(Keras): https://github.com/allanzelener/YAD2K
github(PyTorch): https://github.com/longcw/yolo2-pytorch
github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
github(Windows): https://github.com/AlexeyAB/darknet
github: https://github.com/choasUp/caffe-yolo9000
github: https://github.com/philipperemy/yolo-9000
SSD
github: https://github.com/zhreshold/mxnet-ssd
github: https://github.com/zhreshold/mxnet-ssd.cpp
github: https://github.com/rykov8/ssd_keras
github: https://github.com/balancap/SSD-Tensorflow
github: https://github.com/amdegroot/ssd.pytorch
github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
Recurrent Scale Approximation for Object Detection in CNN
[https://github.com/sciencefans/RSA-for-object-detection]
Mask-RCNN 2017
Keras [https://github.com/matterport/Mask_RCNN\]
TensorFlow [https://github.com/CharlesShang/FastMaskRCNN]
Pytorch [https://github.com/felixgwu/mask_rcnn_pytorch\]
caffe [https://github.com/jasjeetIM/Mask-RCNN]
MXNet [https://github.com/TuSimple/mx-maskrcnn]
Ross Girshick (rbg 大神)
[http://www.rossgirshick.info/]
Kaiming He, Facebook人工智能实验室科学家Kaiming He
[http://kaiminghe.com/]
Shaoqing Ren
[http://shaoqingren.com/]
Jian Sun
[http://www.jiansun.org/]
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取最新AI相关知识
特别提示-专知目标检测主题:
获取完整版查看,最新更新Image Caption知识资料,请PC登录www.zhuanzhi.ai或者点击阅读原文,顶端搜索“目标检测” 主题,查看获得专知荟萃全集知识等资料!如下图所示~
此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),
后台回复“OD” 就可以在手机端获取专知目标检测知识资料链接~~
欢迎转发到你的微信群和朋友圈,分享专业AI知识!
更多专知荟萃知识资料全集获取,请查看:
【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)
【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)
【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
【专知荟萃07】自动文摘AS知识资料全集(入门/进阶/代码/数据/专家等)(附pdf下载)
【专知荟萃08】图像描述生成Image Caption知识资料全集(入门/进阶/论文/综述/视频/专家等)
【教程实战】Google DeepMind David Silver《深度强化学习》公开课教程学习笔记以及实战代码完整版
【GAN货】生成对抗网络知识资料全集(论文/代码/教程/视频/文章等)
【干货】Google GAN之父Ian Goodfellow ICCV2017演讲:解读生成对抗网络的原理与应用
【AlphaGoZero核心技术】深度强化学习知识资料全集(论文/代码/教程/视频/文章等)
请扫描小助手,加入专知人工智能群,交流分享~
获取更多关于机器学习以及人工智能知识资料,请访问www.zhuanzhi.ai, 或者点击阅读原文,即可得到!
-END-
欢迎使用专知
专知,一个新的认知方式!目前聚焦在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。
使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知
中国科学院自动化研究所专知团队
@2017 专知
专 · 知
关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。
点击“阅读原文”,使用专知!