点击上方“专知”关注获取专业AI知识!
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢!专知为大家呈送专知主题荟萃知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复" 专知"进入专知,搜索感兴趣主题查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家转发分享~
【AlphaGoZero核心技术】深度强化学习专知荟萃
基础入门
进阶文章
Papers
Papers for NLP
Tutorials
中英文综述
视频教程
代码
博客
领域专家
1.Reinforcement learning wiki
[https://en.wikipedia.org/wiki/Reinforcement_learning]
2.Deep Reinforcement Learning: Pong from Pixels
[http://karpathy.github.io/2016/05/31/rl/]
3.CS 294: Deep Reinforcement Learning
[http://rll.berkeley.edu/deeprlcourse/]
4.什么是强化学习?
[http://www.cnblogs.com/geniferology/p/what_is_reinforcement_learning.html]
5.强化学习系列之一:马尔科夫决策过程
[http://www.algorithmdog.com/%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0-%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E5%86%B3%E7%AD%96%E8%BF%87%E7%A8%8B]
6.强化学习系列之三:模型无关的策略评价
[http://www.algorithmdog.com/reinforcement-learning-model-free-evalution]
7.强化学习系列之九:Deep Q Network (DQN)
[http://www.algorithmdog.com/drl]
8.【整理】强化学习与MDP
[http://www.cnblogs.com/mo-wang/p/4910855.html]
9.强化学习入门及其实现代码
[http://www.jianshu.com/p/165607eaa4f9]
10.David视频里所使用的讲义pdf
[https://pan.baidu.com/s/1nvqP7dB]
11.强化学习简介——南京大学俞扬
[https://www.jianguoyun.com/p/DVSE-5AQ5oLtBRiKmis]
12.DavidSilver? 关于 深度确定策略梯度 DPG的论文
[http://www.jmlr.org/proceedings/papers/v32/silver14.pdf]
13.Nature 上关于深度 Q 网络 (DQN) 论文:"
[http://www.nature.com/articles/nature14236]
14.【教程实战】Google DeepMind David Silver《深度强化学习》公开课教程学习笔记以及实战代码完整版 [http://mp.weixin.qq.com/s/y1aa_nIimSv4wlprGFHR7g]
1.Mastering the Game of Go without Human Knowledge
[https://deepmind.com/documents/119/agz_unformatted_nature.pdf]
2.Mastering the game of Go with deep neural networks and tree search
[http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html]
3.Human level control with deep reinforcement learning
[http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html]
4.Play Atari game with deep reinforcement learning
[https://www.cs.toronto.edu/%7Evmnih/docs/dqn.pdf]
5.Prioritized experience replay
[https://arxiv.org/pdf/1511.05952v2.pdf]
6.Dueling DQN
[https://arxiv.org/pdf/1511.06581v3.pdf]
7.Deep reinforcement learning with double Q Learning
[https://arxiv.org/abs/1509.06461 ]
8.Deep Q learning with NAF
[https://arxiv.org/pdf/1603.00748v1.pdf]
9.Deterministic policy gradient
[http://jmlr.org/proceedings/papers/v32/silver14.pdf]
10.Continuous control with deep reinforcement learning) (DDPG)
[https://arxiv.org/pdf/1509.02971v5.pdf]
11.Asynchronous Methods for Deep Reinforcement Learning
[https://arxiv.org/abs/1602.01783]
12.Policy distillation
[https://arxiv.org/abs/1511.06295]
13.Unifying Count-Based Exploration and Intrinsic Motivation
[https://arxiv.org/pdf/1606.01868v2.pdf]
14.Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models
[https://arxiv.org/pdf/1507.00814v3.pdf]
15.Action-Conditional Video Prediction using Deep Networks in Atari Games
[https://arxiv.org/pdf/1507.08750v2.pdf]
16."Control of Memory, Active Perception, and Action in Minecraft"
[https://web.eecs.umich.edu/~baveja/Papers/ICML2016.pdf]
17.PathNet
[https://arxiv.org/pdf/1701.08734.pdf]
1.Coarse-to-Fine Question Answering for Long Documents
[https://homes.cs.washington.edu/~eunsol/papers/acl17eunsol.pdf]
2.A Deep Reinforced Model for Abstractive Summarization
[https://arxiv.org/pdf/1705.04304.pdf]
3.Reinforcement Learning for Simultaneous Machine Translation
[https://www.umiacs.umd.edu/~jbg/docs/2014_emnlp_simtrans.pdf]
4.Dual Learning for Machine Translation
[https://papers.nips.cc/paper/6469-dual-learning-for-machine-translation.pdf]
5.Learning to Win by Reading Manuals in a Monte-Carlo Framework
[http://people.csail.mit.edu/regina/my_papers/civ11.pdf]
6.Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
[http://people.csail.mit.edu/regina/my_papers/civ11.pdf]
7.Deep Reinforcement Learning with a Natural Language Action Space
[http://www.aclweb.org/anthology/P16-1153]
8.Deep Reinforcement Learning for Dialogue Generation
[https://arxiv.org/pdf/1606.01541.pdf]
9.Reinforcement Learning for Mapping Instructions to Actions
[http://people.csail.mit.edu/branavan/papers/acl2009.pdf]
10.Language Understanding for Text-based Games using Deep Reinforcement Learning
[https://arxiv.org/pdf/1506.08941.pdf]
11.End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning
[https://arxiv.org/pdf/1606.01269v1.pdf]
12.End-to-End Reinforcement Learning of Dialogue Agents for Information Access
[https://arxiv.org/pdf/1609.00777v1.pdf]
13.Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning
[https://arxiv.org/pdf/1702.03274.pdf]
14.Deep Reinforcement Learning for Mention-Ranking Coreference Models
[https://arxiv.org/abs/1609.08667]
Reinforcement Learning for NLP
[http://www.umiacs.umd.edu/~jbg/teaching/CSCI_7000/11a.pdf]
David Silver ICML2016 Tutorial: Deep Reinforcement Learning
[http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf ]
David Silver ICML2016 Tutorial: Deep Reinforcement Learning 中文讲稿
DQN tutorial
[https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-4-deep-q-networks-and-beyond-8438a3e2b8df#.28wv34w3a]
强化学习简介——南京大学俞扬(PDF)
[https://www.jianguoyun.com/p/DVSE-5AQ5oLtBRiKmis]
深度强化学习综述:兼论计算机围棋的发展
[https://wenku.baidu.com/view/539025f99fc3d5bbfd0a79563c1ec5da50e2d684.html]
深度强化学习综述- 计算机学报
[https://wenku.baidu.com/view/772ea6e5ab00b52acfc789eb172ded630a1c9852.html]
深度强化学习综述:从AlphaGo背后的力量到学习资源分享| 机器之心
[https://zhuanlan.zhihu.com/p/25037206]
英文最新综述 DEEP REINFORCEMENT LEARNING: AN OVERVIEW
[https://arxiv.org/pdf/1701.07274.pdf]
1.David Silver的这套视频公开课(Youtube)
[https://www.youtube.com/watch?v=2pWv7GOvuf0&ampampampamplist=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT;]
2.David Silver的这套视频公开课(Youku)
[http://www.bilibili.com/video/av9831889/?from=search&seid=17387316110198388304?]
3.David Silver的这套视频公开课(Bilibili)
[http://www.bilibili.com/video/av9831889/?from=search&seid=17387316110198388304?]
4.强化学习课程 by David Silver
[https://www.bilibili.com/video/av8912293/?from=search&seid=1166472326542614796]
5.CS234: Reinforcement Learning
[http://web.stanford.edu/class/cs234/index.html]
6.什么是强化学习? (Reinforcement Learning)
[https://www.youtube.com/watch?v=NVWBs7b3oGk]
7.什么是 Q Learning (Reinforcement Learning 强化学习)
[https://www.youtube.com/watch?v=HTZ5xn12AL4]
8.Deep Reinforcement Learning
[http://videolectures.net/rldm2015_silver_reinforcement_learning/]
9.强化学习教程(莫烦)
[https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/]
10.David Silver ICML2016 Tutorial: Deep Reinforcement Learning 视频 [http://techtalks.tv/talks/deep-reinforcement-learning/62360/]
1.OpenAI Gym
[https://github.com/openai/gym]
2.GoogleDeep Mind 团队深度 Q 网络 (DQN) 源码:
[http://sites.google.com/a/deepmind.com/dqn/]
3.ReinforcementLearningCode
[https://github.com/halleanwoo/ReinforcementLearningCode]
4.reinforcement-learning
[https://github.com/dennybritz/reinforcement-learning]
5.DQN
[https://github.com/devsisters/DQN-tensorflow]
6.DDPG
[https://github.com/stevenpjg/ddpg-aigym]
7.A3C01
[https://github.com/miyosuda/async_deep_reinforce]
8.A3C02
[https://github.com/openai/universe-starter-agent]
1.Play pong with deep reinforcement learning based on pixel
[http://karpathy.github.io/2016/05/31/rl/]
2."What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?"
[https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/]
3.Deep Learning in a Nutshell: Reinforcement Learning
[https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/]
4.南京大学俞扬博士万字演讲全文:强化学习前沿
[https://www.leiphone.com/news/201705/NlTc7oObBqh116Z5.html]
5.Nature 上关于 AlphaGo 的论文 [http://www.nature.com/articles/nature16961]
6.AlphaGo 相关的资源 [https://deepmind.com/research/alphago/]
7.Reinforcement Learning(RL) for Natural Language Processing(NLP) [https://github.com/adityathakker/awesome-rl-nlp]
加州大学伯克利分校机器人学专家 Sergey Levine
[https://people.eecs.berkeley.edu/~svlevine/]
前百度首席科学家 Andrew Ng
[http://www.andrewng.org/]
加拿大阿尔伯塔大学著名增强学习大师Richard S. Sutton 教授
[https://www.amii.ca/sutton/]
Google DeepMind AlphaGo项目的主程序员 David Silver 博士
[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Home.html]
特别提示-专知强化学习主题:
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录,顶端搜索“强化学习” 主题,查看评论获得专知荟萃全集知识等资料,直接PC端访问体验更佳!如下图所示~
此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),
后台回复“强化学习”或者“RL” 就可以在手机端获取专知强化学习知识资料查看链接地址,直接打开荟萃资料的链接地址~~
请扫描专知小助手,加入专知人工智能群交流~
专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:
【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)
【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)
【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)
【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)
【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)
【专知荟萃07】自动文摘AS知识资料全集(入门/进阶/代码/数据/专家等)(附pdf下载)
【专知荟萃08】图像描述生成Image Caption知识资料全集(入门/进阶/论文/综述/视频/专家等)
【专知荟萃09】目标检测知识资料全集(入门/进阶/论文/综述/视频/代码等)
【专知荟萃10】推荐系统RS知识资料全集(入门/进阶/论文/综述/视频/代码等)
【专知荟萃11】GAN生成式对抗网络知识资料全集(理论/报告/教程/综述/代码等)
【专知荟萃12】信息检索 Information Retrieval 知识资料全集(入门/进阶/综述/代码/专家,附PDF下载)
【专知荟萃13】工业学术界用户画像 User Profile 实用知识资料全集(入门/进阶/竞赛/论文/PPT,附PDF下载)
【专知荟萃14】机器翻译 Machine Translation知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)
【专知荟萃15】图像检索Image Retrieval知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)
【专知荟萃16】主题模型Topic Model知识资料全集(基础/进阶/论文/综述/代码/专家,附PDF下载)
【专知荟萃17】情感分析Sentiment Analysis 知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
【专知荟萃18】目标跟踪Object Tracking知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
【专知荟萃19】图像识别Image Recognition知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
【专知荟萃20】图像分割Image Segmentation知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
【专知荟萃21】视觉问答VQA知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)
-END-
专 · 知
人工智能领域主题知识资料查看获取:【专知荟萃】人工智能领域22个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
请关注我们的公众号,获取人工智能的专业知识。扫一扫关注我们的微信公众号。
点击“阅读原文”,使用专知!