【CVPR2020-Oral】自监督单目场景流量估计,Self-Supervised Monocular SFE

2020 年 4 月 9 日 专知

场景流估计在三维环境感知中越来越受到重视。单目场景流估计是一个高度不适定的问题,目前缺乏实用的解决方案。单目场景流估计是从两个时间上连续的图像中获取三维结构和三维运动。我们提出了一种新的单目场景流算法,该算法具有较强的精度和实时性。采用逆问题观点,我们设计了一个单独的卷积神经网络(CNN),它可以成功地从一个经典的光流成本体积同时估计深度和三维运动。我们采用带有三维损失函数和遮挡推理的自监督学习来利用未标记的数据。我们验证了我们的设计选择,包括代理丢失和增加设置。我们的模型在单目场景流的无监督/自监督学习方法中达到了最先进的精度,并在光流和单目深度估计子任务中获得了具有竞争力的结果。半监督微调进一步提高了精度,并在实时产生有希望的结果。

https://arxiv.org/abs/2004.04143



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“SFE” 就可以获取【CVPR2020-Oral】自监督单目场景流量估计,Self-Supervised Monocular SFE》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
2

相关内容

【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
25+阅读 · 2020年5月25日
专知会员服务
41+阅读 · 2020年2月20日
【泡泡图灵智库】基于有限姿态监督的单目三维重建
泡泡机器人SLAM
5+阅读 · 2019年9月6日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
Top
微信扫码咨询专知VIP会员