【ACL2020-CMU-Google】MobileBERT:用于资源受限设备的任务无关“瘦版”BERT

2020 年 4 月 10 日 深度学习自然语言处理

点击上方,选择星标置顶,每天给你送干货

阅读大概需要4分钟

跟随小博主,每天进步一丢丢


整理:专知

自然语言处理(NLP)最近取得了巨大的成功,它使用了带有数亿个参数的巨大的预先训练的模型。然而,这些模型存在模型大小过大和延迟时间长等问题,因此无法部署到资源有限的移动设备上。在本文中,我们提出了压缩和加速流行的BERT模型的MobileBERT。与最初的BERT一样,MobileBERT是与任务无关的,也就是说,它可以通过简单的微调应用于各种下游NLP任务。基本上,MobileBERT是BERT_LARGE的瘦版,同时配备了瓶颈结构和精心设计的自关注和前馈网络之间的平衡。为了训练MobileBERT,我们首先训练一个特别设计的教师模型,一个倒瓶颈合并BERT_LARGE模型。然后,我们把这个老师的知识传递给MobileBERT。实证研究表明,MobileBERT比BERT_BASE小4.3倍,快5.5倍,同时在著名的基准上取得了有竞争力的结果。在GLUE的自然语言推断任务中,MobileBERT实现了GLUEscore o 77.7(比BERT_BASE低0.6),在Pixel 4手机上实现了62毫秒的延迟。在team v1.1/v2.0的问题回答任务中,MobileBERT获得了dev F1的90.0/79.2分(比BERT_BASE高1.5/2.1分)。


https://arxiv.org/abs/2004.02984



交流学习,进群备注: 昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多: 机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等
广告商、博主勿入!


登录查看更多
0

相关内容

【ACL2020-伯克利】预训练Transformer提高分布外鲁棒性
专知会员服务
20+阅读 · 2020年4月14日
【ACL2020-Facebook AI】大规模无监督跨语言表示学习
专知会员服务
34+阅读 · 2020年4月5日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
24+阅读 · 2019年11月4日
ChineseGLUE:为中文NLP模型定制的自然语言理解基准
迄今最大模型?OpenAI发布参数量高达15亿的通用语言模型GPT-2
中国人工智能学会
7+阅读 · 2019年2月15日
Arxiv
3+阅读 · 2019年9月5日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
8+阅读 · 2019年3月21日
VIP会员
Top
微信扫码咨询专知VIP会员