A natural representation of random graphs is the random measure. The collection of product random measures, their transformations, and non-negative test functions forms a general representation of the collection of non-negative weighted random graphs, directed or undirected, labeled or unlabeled, where (i) the composition of the test function and transformation is a non-negative edge weight function, (ii) the mean measures encode edge density/weight and vertex degree density/weight, and (iii) the mean edge weight, when square-integrable, encodes generalized spectral and Sobol representations. We develop a number of properties of these random graphs, and we give simple examples of some of their possible applications.
翻译:随机图表的自然表示是随机的。随机产品随机测量、其变异和非负测试功能的收集构成非负加权随机图集的总表示,这些图集有定向或无定向、有标签或无标签,其中(一) 测试函数和变异的构成为非负边缘重量函数,(二) 用于编码边缘密度/重量和顶端密度/重量的平均值,以及(三) 平均边缘重量,在可进行正对称、编码为普通光谱和索博尔表示法时。我们开发了这些随机图的若干特性,我们简单举例说明了这些图集的一些可能应用。