随着机器学习算法在高风险应用中不断开发和部署,确保其可靠性已变得至关重要。本论文介绍了在机器学习中提高可靠性的算法进展,重点强调两个关键维度:鲁棒性和可解释性。 本论文的第一部分侧重于鲁棒性,即保证算法在各种数据不确定性下仍能提供稳定和可预测的性能。我们研究了在不同数据不确定性来源下的学习鲁棒性,包括基本的统计误差以及数据噪声和损坏。我们的研究揭示了这些不同来源如何相互作用并对数据驱动决策产生影响。我们引入了针对特定不确定性来源量身定制的新颖的分布鲁棒优化方法。我们的研究结果表明,对一种来源的保护可能会增加对另一种来源的脆弱性。为了解决这个问题,我们开发了分布模糊集,能够同时提供对所有来源的整体鲁棒性。在每种情况下,我们证明了我们的新方法实现了“高效”的鲁棒性,在平均性能与样本外保证之间实现了最佳平衡。我们的新算法被应用于各种场景,包括训练鲁棒神经网络,在这些场景中显著优于现有基准。 本论文的第二部分探讨了可解释性,这是高风险环境下决策支持工具的一个关键属性,要求算法能够为其决策提供可理解的解释。我们的工作在这一部分的动机来自于数据驱动的个性化患者治疗——一种越来越受欢迎的机器学习应用。在这个强化学习问题中,可解释性至关重要:医生不能依赖于一个黑箱算法来开具治疗方案。我们在理论上引入了学习连续状态空间动态系统最简洁离散表示的问题。在患者治疗的背景下,这相当于基于患者治疗过程中不断变化的特征来确定治疗组。令人惊讶的是,我们在理论上证明,仅从观察到的历史样本路径数据中就有可能学习到动态系统的最简洁表示。随后,我们开发了一种算法,MRL,能够学习这种简洁的表示,从而增强可解释性和可操作性。

成为VIP会员查看完整内容
46

相关内容

博士论文是由攻读博士学位的研究生所撰写的学术论文。它要求作者在博士生导师的指导下,选择自己能够把握和驾驭的潜在的研究方向,开辟新的研究领域。由此可见,这就对作者提出了较高要求,它要求作者必须在本学科的专业领域具备大量的理论知识,并对所学专业的理论知识有相当深入的理解和思考,同时还要具有相当水平的独立科学研究能力,能够为在学科领域提出独创性的见解和有价值的科研成果。因而,较之学士论文、硕士论文,博士论文具有更高的学术价值,对学科的发展具有重要的推动作用。
【MIT博士论文】物理启发的生成式模型
专知会员服务
23+阅读 · 2024年9月6日
【MIT博士论文】理解与提升机器学习模型的表征鲁棒性
专知会员服务
26+阅读 · 2024年8月26日
【CMU博士论文】经典方法对现代机器学习的改进
专知会员服务
26+阅读 · 2024年8月16日
【MIT博士论文】优化理论与机器学习实践
专知会员服务
92+阅读 · 2022年6月30日
SFFAI报告 | 常建龙 :深度卷积网络中的卷积算子研究进展
人工智能前沿讲习班
11+阅读 · 2018年10月22日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
162+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
424+阅读 · 2023年3月31日
Arxiv
69+阅读 · 2023年3月26日
Arxiv
153+阅读 · 2023年3月24日
Arxiv
22+阅读 · 2023年3月17日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员