Facebook的研究员从一个新奇的角度对神经网络的表示与设计进行探索,提出了一种新颖的相关图表示方式。它有助于对现有网络架构进行更深层次的分析与性能评价。这种相关图的表示方式、实验发现等确实挺有意思,也与现有网络结构设计有一定相通之处,故推荐各位同学。
神经网络通用被表示成图的形式(即神经元之间通过边进行链接),尽管这种表示方式得到了广泛应用,但关于神经网络结构与性能之间的关系却鲜少有所了解。
作者系统的研究了神经网络的图结构是如何影响其性能的,为达成该目的,作者开发了一种新颖的称之为relational graph(相关图)的图表示方式,神经网络的层沿图像结构进行多次信息交互。基于这种图表示方式,作者发现了这样几点有意思发现: