理论结果表明,为了学习用于表示高层次的抽象(例如视觉、语言以及其他AI级别的任务)的复杂函数,我们需要深度结构。深度结构的组成包括了多层次的非线性操作,比如具有许多隐含层的神经网络,或者重用了许多子公式的复杂命题公式。搜索深度结构的参数空间是一件很困难的任务,但是近提出的诸如用于深度信念网络等的学习算法,对于探索这类问题取得了显着的成功,在某些领域达到了新的水平。
本书讨论深度学习算法的方法和原理,尤其是那些被充分用作基石的单层模型的非监督学习算法例如受限玻尔兹曼机(RBM),它用于构建深度信念网络等深度模型。
尤舒亚•本吉奥(Yoshua Bengio),加拿大蒙特利尔大学计算机科学与运筹学系教授,领导蒙特利尔学习算法研究所。他是深度学习历史上的代表性人物之一,发表了200余篇论文和两部专着,是加拿大论文引用率高的计算机科学家之一。
http://edlab-www.cs.umass.edu/cs697l/readings/Learning%20Deep%20Architectures%20for%20AI.pdf