Prior research has explored the ability of computational models to predict a word semantic fit with a given predicate. While much work has been devoted to modeling the typicality relation between verbs and arguments in isolation, in this paper we take a broader perspective by assessing whether and to what extent computational approaches have access to the information about the typicality of entire events and situations described in language (Generalized Event Knowledge). Given the recent success of Transformers Language Models (TLMs), we decided to test them on a benchmark for the \textit{dynamic estimation of thematic fit}. The evaluation of these models was performed in comparison with SDM, a framework specifically designed to integrate events in sentence meaning representations, and we conducted a detailed error analysis to investigate which factors affect their behavior. Our results show that TLMs can reach performances that are comparable to those achieved by SDM. However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge, and their predictions often depend on surface linguistic features, such as frequent words, collocations and syntactic patterns, thereby showing sub-optimal generalization abilities.


翻译:先前的研究探索了计算模型预测适合特定前提的词义语义的能力。虽然在将动词和参数的典型关系单独进行模型化方面做了大量工作,但在本文件中,我们从更广泛的角度评估计算方法是否以及在多大程度上能够获取关于语言(通用事件知识)所述全部事件和情况的典型性信息(通用事件知识),鉴于变异语言模型最近的成功,我们决定测试这些模型,以确定对主题适切性进行\textit{动态估计的基数。这些模型的评估是与SDM(一个专门设计用于将事件纳入句子表达方式的框架)相比进行的,我们进行了详细的错误分析,以调查哪些因素影响其行为。我们的结果表明,TLMS可以达到与SDM(通用事件知识)相似的性能。然而,进一步的分析一致表明,TLMS并不能够捕捉到重要的知识方面,其预测往往取决于表面语言特征,例如频繁的文字、相交点和合成模式,从而显示亚性一般化能力。

0
下载
关闭预览

相关内容

数据挖掘是从数据中发现有价值的知识的计算过程,是现代数据科学的核心。它在许多领域有着巨大的应用,包括科学、工程、医疗保健、商业和医学。这些字段中的典型数据集是大的、复杂的,而且通常是有噪声的。从这些数据集中提取知识需要使用复杂的、高性能的、有原则的分析技术和算法。这些技术反过来又需要在高性能计算基础设施上的实现,这些基础设施需要经过仔细的性能调优。强大的可视化技术和有效的用户界面对于使数据挖掘工具吸引来自不同学科的研究人员、分析师、数据科学家和应用程序开发人员以及利益相关者的可用性也至关重要。SDM确立了自己在数据挖掘领域的领先地位,并为解决这些问题的研究人员提供了一个在同行评审论坛上展示其工作的场所。SDM强调原则方法和坚实的数学基础,以其高质量和高影响力的技术论文而闻名,并提供强大的研讨会和教程程序(包括在会议注册中)。 官网地址:http://dblp.uni-trier.de/db/conf/sdm/
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月25日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Using Scene Graph Context to Improve Image Generation
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员