题目: 解决基于图神经网络的会话推荐存在的信息损失问题
会议: KDD 2020
论文地址: https://dl.acm.org/doi/pdf/10.1145/3394486.3403170
推荐理由: 这篇论文提出了目前在使用图神经网络方法来解决基于会话的推荐问题时所存在的两个信息缺失问题并建立一个没有信息丢失问题的模型,在三个公共数据集上优于最先进的模型。
在许多在线服务中,用户的行为自然是按时间排序的。为了预测用户未来的行为,下一项(next-item)推荐系统通过从用户的历史行为中挖掘序列模式来学习用户的偏好。基于会话的推荐是下一项推荐的特殊情况。与一般的下一项推荐系统使用固定数量的前n项来预测下一项不同,基于会话的推荐系统将用户的操作分组为互不关联的会话,只使用当前会话中的项目来进行推荐。其中会话是在时间上接近的一组项目。基于会话的推荐的思想来自于这样一种观察,即会话内依赖项对下一项的影响比会话间依赖项更大。因此,一般的下一项推荐系统可能存在合并不相关会话和提取不完整会话的问题。而基于会话的推荐系统则不存在这样的问题,因此可以做出更准确的推荐,并被部署在许多在线服务中。