【导读】新加坡国立大学的Xiang Wang、Tat-Seng Chua,以及来自中国科学技术大学的Xiangnan He在WSDM 2020会议上通过教程《Learning and Reasoning on Graph for Recommendation》介绍了基于图学习和推理的推荐系统,涵盖了基于随机游走的推荐系统、基于网络嵌入的推荐系统,基于图神经网络的推荐系统等内容。

Tutorial摘要:

推荐方法构建预测模型来估计用户-项目交互的可能性。之前的模型在很大程度上遵循了一种通用的监督学习范式——将每个交互视为一个单独的数据实例,并基于“信息孤岛”进行预测。但是,这些方法忽略了数据实例之间的关系,这可能导致性能不佳,特别是在稀疏场景中。此外,建立在单独数据实例上的模型很难展示推荐背后的原因,这使得推荐过程难以理解。

在本教程中,我们将从图学习的角度重新讨论推荐问题。用于推荐的公共数据源可以组织成图,例如用户-项目交互(二部图)、社交网络、项目知识图(异构图)等。这种基于图的组织将孤立的数据实例连接起来,为开发高阶连接带来了好处,这些连接为协作过滤、基于内容的过滤、社会影响建模和知识感知推理编码有意义的模式。随着最近图形神经网络(GNNs)的成功,基于图形的模型显示了成为下一代推荐系统技术的潜力。本教程对基于图的推荐学习方法进行了回顾,重点介绍了GNNs的最新发展和先进的推荐知识。通过在教程中介绍这一新兴而有前景的领域,我们希望观众能够对空间有更深刻的理解和准确的洞察,激发更多的想法和讨论,促进技术的发展。

Tutorial大纲:

成为VIP会员查看完整内容
182
0

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
146+阅读 · 2020年6月21日
【WWW2020】DGL深度图神经网络实战教程,PPT+代码
专知会员服务
149+阅读 · 2020年4月12日
WSDM 2020教程《深度贝叶斯数据挖掘》,附257页PPT下载
专知会员服务
131+阅读 · 2020年2月7日
专知会员服务
72+阅读 · 2020年1月20日
图数据表示学习综述论文
专知
36+阅读 · 2019年6月10日
【WWW2018】网络表示学习Tutorial(附下载)
专知
10+阅读 · 2018年4月25日
Arxiv
8+阅读 · 2019年2月19日
Arxiv
21+阅读 · 2018年8月3日
Arxiv
13+阅读 · 2018年4月18日
小贴士
微信扫码咨询专知VIP会员