【导读】机器学习大拿Christoph Molnar继推出《可解释机器学习》一著作,进来和他的学生们推出新书可解释机器学习的局限性《Limitations of Interpretable Machine Learning Methods》,阐述了可解释机器学习的概念、方法等,以及重要的是适用的边界,即可解释机器学习的局限,知道能与不能方能用好IML。本书共14章,是Christoph Molnar课题组最新成果,值得参阅。
本书解释了当前可解释机器学习方法的局限性。这些方法包括部分相关图(PDP)、累积局部效应(ALE)、排列特征重要性、单因素协变量缺失(LOCO)和局部可解释模型无关解释(LIME)。所有这些方法都可以用来解释训练过的机器学习模型的行为和预测。但在以下情况下,这些解释方法可能并不适用:
如果模型对交互进行建模(例如,当使用随机森林时)
如果特征之间有很强的相关性
如果模型没有正确地建立因果关系模型
解释方法参数设置不正确的
这本书是“可解释机器学习的局限性”研讨会的成果,该研讨会于2019年夏天在慕尼黑大学统计系举行。