来自Google Balaji Lakshminarayanan对深度学习异常检测做了细致讲解,值得关注!

成为VIP会员查看完整内容
47

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
76+阅读 · 2021年9月27日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
36+阅读 · 2020年11月29日
专知会员服务
45+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
深度学习了解一下(附53页Slides)
专知
48+阅读 · 2019年5月20日
Google Brain ICLR Talk:元学习的前沿与挑战
专知
27+阅读 · 2019年5月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月19日
Arxiv
0+阅读 · 2022年7月17日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
76+阅读 · 2021年9月27日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
36+阅读 · 2020年11月29日
专知会员服务
45+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员