文档级关系三元组提取(DocRTE)是信息系统中的一项基础任务,旨在从文档中同时提取具有语义关系的实体。现有的方法在很大程度上依赖于大量的完全标记数据。然而,为新兴关系收集和注释数据是耗时且劳动密集的。最近的先进大型语言模型(LLM),如ChatGPT和LLaMA,展示了令人印象深刻的长文本生成能力,激发了我们探索一种获取带有新关系的自动标记文档的替代方法。在本文中,我们提出了一种零样本文档级关系三元组提取(ZeroDocRTE)框架,该框架通过从LLM中检索和去噪知识来生成标记数据,称为GenRDK。具体来说,我们提出了一种链式检索提示,以引导ChatGPT逐步生成带标签的长文本数据。为了提高合成数据的质量,我们提出了一种基于跨文档知识一致性的去噪策略。利用我们的去噪合成数据,我们继续对LLaMA2-13B-Chat进行微调,以提取文档级关系三元组。我们在两个公共数据集上进行了零样本文档级关系和三元组提取的实验。实验结果表明,我们的GenRDK框架胜过了强基线方法。

成为VIP会员查看完整内容
24

相关内容

【AAAI2024】基于扩散语言模型的文本引导分子生成
专知会员服务
28+阅读 · 2024年2月21日
【CVPR2023】GeoLayoutLM:视觉信息提取的几何预训练
专知会员服务
32+阅读 · 2023年4月25日
【KDD2022】基于对抗性知识蒸馏的深度图神经网络压缩
专知会员服务
24+阅读 · 2022年6月10日
【CVPR2022】语言引导与基于视觉的深度度量学习的集成
专知会员服务
16+阅读 · 2022年3月17日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
22+阅读 · 2021年11月29日
专知会员服务
38+阅读 · 2021年4月25日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
62+阅读 · 2021年4月21日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
29+阅读 · 2021年4月9日
【WWW2021】自监督学习上下文嵌入的异构网络链接预测
专知会员服务
40+阅读 · 2021年2月10日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
如何使用自然语言工具包(NLTK)在Python3中执行情感分析
Python程序员
19+阅读 · 2019年10月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
Arxiv
162+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
424+阅读 · 2023年3月31日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【AAAI2024】基于扩散语言模型的文本引导分子生成
专知会员服务
28+阅读 · 2024年2月21日
【CVPR2023】GeoLayoutLM:视觉信息提取的几何预训练
专知会员服务
32+阅读 · 2023年4月25日
【KDD2022】基于对抗性知识蒸馏的深度图神经网络压缩
专知会员服务
24+阅读 · 2022年6月10日
【CVPR2022】语言引导与基于视觉的深度度量学习的集成
专知会员服务
16+阅读 · 2022年3月17日
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
22+阅读 · 2021年11月29日
专知会员服务
38+阅读 · 2021年4月25日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
62+阅读 · 2021年4月21日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
29+阅读 · 2021年4月9日
【WWW2021】自监督学习上下文嵌入的异构网络链接预测
专知会员服务
40+阅读 · 2021年2月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员