食品与人类的行为、健康和文化等密切相关。来自社交网络、移动网络和物联网等泛在网络产生的食品大数据及人工智能尤其是深度学习技术的快速发展催生了新的交叉研究领域食品计算[Min2019-ACM CSUR]。作为食品计算的核心任务之一,食品图像识别同时是计算机视觉领域中细粒度视觉识别的重要分支,因而具有重要的理论研究意义,并在智慧健康、食品智能装备、智慧餐饮、智能零售及智能家居等方面有着广泛的应用前景。本文在项目组前期食品识别(Food Recognition:[Jiang2020-IEEE TIP][Min2019-ACMMM])的研究基础上,提出了一个新的食品数据集ISIA Food-500。该数据集包含500个类别,大约40万张图像,在类别量和图片数据量方面都超过了现有的基准数据集。在此基础上我们提出了一个新的网络SGLANet联合学习食品图像的全局和局部视觉特征以进行食品识别,在ISIA Food-500和现有的基准数据集上进行了实验分析与验证。