This analysis explores the temporal sequencing of objects in a movie trailer. Temporal sequencing of objects in a movie trailer (e.g., a long shot of an object vs intermittent short shots) can convey information about the type of movie, plot of the movie, role of the main characters, and the filmmakers cinematographic choices. When combined with historical customer data, sequencing analysis can be used to improve predictions of customer behavior. E.g., a customer buys tickets to a new movie and maybe the customer has seen movies in the past that contained similar sequences. To explore object sequencing in movie trailers, we propose a video convolutional network to capture actions and scenes that are predictive of customers' preferences. The model learns the specific nature of sequences for different types of objects (e.g., cars vs faces), and the role of sequences in predicting customer future behavior. We show how such a temporal-aware model outperforms simple feature pooling methods proposed in our previous works and, importantly, demonstrate the additional model explain-ability allowed by such a model.
翻译:这一分析探索了电影拖车中物体的时间顺序。 电影拖车中物体的时间顺序( 例如, 物体的长镜头比间歇短镜头) 可以传递有关电影类型、 电影情节、 主要人物的角色和电影制片人电影选择的信息。 当与历史客户数据相结合时, 序列分析可以用来改进对客户行为的预测。 例如, 客户购买新电影的票, 也许客户过去看过包含类似序列的电影。 为了探索电影拖车中的物体顺序, 我们提议建立一个视频革命网络, 以捕捉预测客户喜好的行动和场景。 该模型可以了解不同类型物体( 如汽车对脸)序列的具体性质, 以及序列在预测客户未来行为中的作用。 我们展示了这种时间觉模型如何超越我们先前作品中提议的简单特征集合方法, 并且重要的是, 展示了这种模型允许的额外模型解释性。