当Non-local遇见SENet,微软亚研提出更高效的全局上下文网络

2019 年 5 月 6 日 机器之心

机器之心发布

作者:Yue Cao、Jiarui Xu、Stephen Lin、

Fangyun Wei、Han Hu

近年来,注意力模型以其强大的建模能力受到了广泛地研究与关注。基于注意力模型,来自清华、港科大、微软亚研院的研究者们提出了一种新的全局上下文建模网络(Global Context Network,简称 GCNet),此网络同时吸取 Non-local Network 全局上下文建模能力强与 Squeeze-Excitation Network 计算量低的优点,在目标检测、图像分类与动作识别等基础任务中,在计算量几乎无增加的情况下准确度取得显著提升。



  • 论文地址:https://arxiv.org/abs/1904.11492v1

  • 代码地址:https://github.com/xvjiarui/GCNet


建模远程依赖(long-range dependency)旨在加强学习过程中对视觉场景的全局理解,且被证明会对广泛的识别任务有益。在卷积神经网络中,卷积层主要作用于局部区域,由此远程依赖仅能通过堆叠多层卷积层进行建模,但多个卷积层的堆叠不仅计算量大,且难以优化。


为解决这个问题,Non-local Network(NLNet)使用自注意力机制来建模远程依赖。对于每个查询点(query position),NLNet 首先计算查询点与所有点之间的成对关系以得到注意力图(attention map),然后通过加权和的方式聚合所有点的特征,从而得到与此查询点相关的全局特征,最终再分别将全局特征加到每个查询点的特征中,完成远程依赖的建模过程。


为了深入理解 NLNet,在目标检测任务中,作者为每张图选取多个查询点,对其注意力图进行可视化,如下图所示:



但从图中惊讶地发现,不同的查询点得到的注意力图几乎一样。经过统计分析后,这一可视化观察在目标检测任务与视频动作识别任务中均被验证。由此,作者对 NLNet 进行简化,使其对不同的查询点计算相同的注意力图,使得其计算量大幅度下降,并发现其准确度并无下降,这再次验证了之前的观察。


此外,作者发现这个简化版的 NLNet 与流行的 Squeeze-Excitation Network(SENet)具有相似的结构。作者将他们抽象为一个通用的全局上下文建模框架,主要分为以下三个模块:(a)上下文建模模块,它将所有位置的特征聚合在一起形成一个全局上下文特征;(b)特征转换模块,用于捕获通道间的相互依赖性;(c)融合模块,将全局上下文特征与所有位置的特征进行融合。其中简化版的 NLNet 与 SENet 均是此全局上下文建模框架的实例。


通过对每个步骤的比较研究,作者发现简化版的 NL Block 和 SE Block 都有各自的缺陷,通过结合每个步骤的最佳实现,即吸收了简化版的 NL Block 全局上下文建模能力强与 SENet 计算量低的优点,作者实现了一种新实例,称为全局上下文模块(Global Context Block)。下图展示了全局上下文建模框架 (a)、简化版 NL Block (b)、SE Block (c),以及在本文提出的 GC Block (d):

 


由于提出的 GC Block 是非常轻量级的,由此可以被应用于多层的多个残差模块中(一般被应用于 ResNet 的 c3~c5 层中),且仅会提升非常少的计算量(小于 0.3%),由此将 GC Block 应用到多层即可得到论文中提出的全局上下文建模网络(GCNet)。


下面将介绍论文中的一些主要结果:


a) 在 COCO 目标检测任务中,以 Mask RCNN&R50&FPN 为 baseline 的结果比较:



b) 以 Mask RCNN&FPN 为 baseline 的不同 backbone 的结果比较:



c) 在 ImageNet 图像分类任务中,以 Res50 为 baseline 的结果比较:

 


d) 在 Kinetics 动作识别任务中,以 Slow-Only&Res50 为 baseline 的结果比较:

 



本文为机器之心发布,转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

登录查看更多
11

相关内容

【KDD2020】自适应多通道图卷积神经网络
专知会员服务
120+阅读 · 2020年7月9日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
【SIGIR2020】LightGCN: 简化和增强图卷积网络推荐
专知会员服务
73+阅读 · 2020年6月1日
【CVPR2020-港中文】 图像识别中的自注意力探索
专知会员服务
56+阅读 · 2020年4月29日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
44+阅读 · 2020年4月17日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
已删除
将门创投
3+阅读 · 2019年9月4日
阅读理解之(bidaf)双向注意力流网络
AINLP
9+阅读 · 2019年6月22日
GCNet:当Non-local遇见SENet
极市平台
11+阅读 · 2019年5月9日
后ResNet时代:SENet与SKNet
PaperWeekly
23+阅读 · 2019年3月25日
自注意力机制在计算机视觉中的应用
GAN生成式对抗网络
19+阅读 · 2018年12月20日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
阅读理解之(bidaf)双向注意力流网络
AINLP
9+阅读 · 2019年6月22日
GCNet:当Non-local遇见SENet
极市平台
11+阅读 · 2019年5月9日
后ResNet时代:SENet与SKNet
PaperWeekly
23+阅读 · 2019年3月25日
自注意力机制在计算机视觉中的应用
GAN生成式对抗网络
19+阅读 · 2018年12月20日
Top
微信扫码咨询专知VIP会员