在现代监督学习中,如何在训练数据稀缺的新领域学习预测模型是一个日益严峻的挑战。这激励开发领域适应方法,利用已知领域(源领域)中的知识,以适应具有不同概率分布的新领域(目标领域)。当源和目标域处于异构特征空间(称为异构域适应(HDA))时,这就变得更具挑战性。虽然大多数HDA方法利用数学优化将源数据和目标数据映射到一个共同的空间,但它们具有较低的可转移性。神经表征已被证明更具可转移性;然而,它们主要是为同类环境设计的。基于区域适应理论,我们提出了一种新的框架——异构对抗性神经域适应(Heterogeneous Adversarial Neural domain adaptation, HANDA),以有效地最大化异质性环境下的可迁移性。HANDA在统一的神经网络体系结构中进行特征和分布对齐,通过对抗核学习实现域不变性。在主要的图像和文本电子商务基准测试中,我们进行了三个实验,以评估与最先进的HDA方法相比的性能。HANDA显示了统计上显著的预测性能改善。HANDA的实际效用在真实世界的暗网在线市场中得到了展示。HANDA是电子商务应用领域成功适应的重要一步。