题目: Graph Neural Networks:A Review of Methods and Applications
简介: 许多学习任务需要处理图形数据,该图形数据包含元素之间的关系信息。对物理系统进行建模,学习分子指纹,预测蛋白质界面以及对疾病进行分类,都需要从图输入中学习模型。在诸如从文本和图像之类的非结构数据中学习的其他领域中,对提取结构的推理,例如句子的依存关系树和图像的场景图,是一个重要的研究课题,它也需要图推理模型。图神经网络(GNN)是连接器模型,可通过在图的节点之间传递消息来捕获图的依赖性。与标准神经网络不同,图神经网络保留一种状态,该状态可以表示来自其邻域的任意深度的信息。尽管已经发现难以训练原始图神经网络来固定点,但是网络体系结构,优化技术和并行计算的最新进展已使他们能够成功学习。近年来,基于图卷积网络(GCN)和门控图神经网络(GGNN)的系统已经在上述许多任务上展示了突破性的性能。在本综述中,我们对现有的图神经网络模型进行了详细的回顾,对应用程序进行了系统分类,并提出了四个未解决的问题,供以后研究。
作者简介: 周杰,教授,清华大学自动化系党委书记,教授,博士生导师。