周志华、王魏、高尉、张利军等老师所著的《机器学习理论导引》一书(下称《导引》),填补了国内缺少机器学习理论入门著作的遗憾。该书试图以通俗易懂的语言,为有志于学习机器学习理论和研究机器学习理论的读者提供一个入门的导引。《导引》主要涵盖七个部分,分别对应机器学习理论中的七个重要概念或理论工具,即:可学性、(假设空间)复杂度、泛化界、稳定性、一致性、收敛率、遗憾界。

《导引》是一本理论性较强的书籍,涉及大量的数学定理和各种证明。尽管撰写团队已尽可能降低了难度,但由于机器学习理论学习本身的特性,该书仍然对读者的数学背景提出了较高的要求。这难免会导致不求甚解的情形,影响学习效果;另一方面,由于篇幅所限,该书写作较为精炼,并非在各个章节都给出示例。读者每每遇到晦涩抽象之处,难免冥思苦索。

基于此两点,我们决定尝试编辑《钥匙书》这一参考笔记,来对《导引》一书作一些浅陋且皮毛的注脚。这既是着眼于那些阅读《导引》时遇到困难的读者,助其更快地走出迷雾;亦是对学习《导引》一书之过程的最好记录。

成为VIP会员查看完整内容
78

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【经典书】数学统计教程,676页pdf
专知会员服务
79+阅读 · 2020年8月9日
耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
44+阅读 · 2020年7月29日
最新《机器学习理论初探》概述
专知会员服务
44+阅读 · 2020年5月19日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
354+阅读 · 2020年2月15日
机器学习入门 | 刷新你三观的高数和线代教程
大数据技术
21+阅读 · 2019年3月22日
人工智能入门书单(附PDF链接)
InfoQ
26+阅读 · 2018年1月24日
大学数学不好,或许是数学教材的锅?
算法与数学之美
15+阅读 · 2017年8月1日
VIP会员
相关VIP内容
微信扫码咨询专知VIP会员