20万,这是新智元今天达到的用户总数。在飞向智能宇宙的旅程中,感谢每一位和新智元同行的朋友。您的关注和支持是“新智元号”星舰永不枯竭的燃料。
20 万,每一位乘客对我们来说都弥足珍贵。我们希望加深对每一位乘客的了解,恳请您对这份问题不多、且不涉及任何隐私的调查问卷给出宝贵的反馈。
新智元正在举行评论赠书活动,点击阅读原文投票,并留下你对新智元公众号的建议,赢取《深度学习》免费赠书。
1新智元专栏·荐书
编辑:刘小芹
【新智元导读】我们在《机器学习里,数学究竟多重要?》一文中提供了机器学习所需的数学知识和建议,对于初学者来说,并不需要先掌握大量的数学知识再开始做机器学习。学习最基本的线性代数和数理统计,然后在掌握更多技术和算法的过程中继续学习数学是很好的方法。那么,本文带来值得推荐的数学基础书籍。
“机器学习/深度学习并不需要很多数学基础!”也许你在不同的地方听过不少类似这样的说法。对于鼓励数学基础不好的同学入坑机器学习来说,这句话是挺不错的。不过,机器学习理论是与统计学、概率论、计算机科学、算法等方面交叉的领域,对这些技术有一个全面的数学理解对理解算法的内部工作机制、获取好的结果是有必要的。机器学习确实需要对一些数学领域有深入理解,缺乏必要的数学知识,很可能在更深入的学习中不断遇到挫折,甚至导致放弃。
机器学习需要的数学主要包括:
线性代数
概率论与数理统计
多元微积分
算法和复杂性优化
其他
那么,了解机器学习这样一个跨学科领域,需要多高的数学水平?答案是多方面的,取决于个人水平和兴趣。至于在机器学习中各方面的数学知识的重要性,可以用下面的图表表示:
机器学习中各数学主题的重要性
上图中,“线性代数”和“概率论与数理统计”占比达到60%,可见它们既是必要、也是十分重要的数学知识。下面针对这两个领域,推荐一些广受好评的书籍。
《线性代数导论》
Introduction to Linear Algebra (5th Ed.)
作者:Gilbert Strang
这本教材是Gilbert Strang教授在MIT讲授《线性代数》课程的指定教材(MIT OpenCourseWare提供公开课视频),也是被很多其他大学选用的经典教材。这本教材难度适中,讲解清晰,对许多核心概念的讨论也很透彻,在国内国外都广受好评。
Gilbert Strang 教授是美国享有盛誉的数学家,在有限元理论、变分法、小波分析及线性代数方面均有所建树。他对教育的贡献尤为卓著,包括所著有的七部经典数学教材和一部专著。 Strang 自1962年至今担任麻省理工大学教授,其所授课程《线性代数导论》、《计算科学与工程》均在 MIT开放课程软件(MIT OpenCourseWare)中收录,获得广泛好评。
虽然该书似乎仍没有正式的中文版出版(如果有了请告诉我们),不过可以对照视频讲解学习。学过的同学的建议是,一定要做课后习题。
线性代数及其应用
作者:David C. Lay
Lay 的《线性代数及其应用》同样是一本经典教材,中文版已出到第3版。除了讲解数学知识外,该书的特色是介绍一些有趣的应用,帮助学习者掌握线性代数基本概念和应用技巧,为后续课程的学习和工作实践奠定基础。
《统计学习方法》
作者:李航
李航老师的《统计学习方法》对于中国学习者来说也是非常熟悉的数学参考书。李航的研究方向包括信息检索、自然语言处理、统计机器学习及数据挖掘,这本书被用于部分高校文本数据挖掘、信息检索及自然语言处理等专业的教材。
《深度学习》(Deep Learning)
作者:Ian Goodfellow, Yoshua Bengio, Aaron Courville
这本“花书”的中文版发售没几天便要加印,被誉为深度学习“圣经”,可见其热门。三位作者都是深度学习领域的“大牛”,这本书也确实被公认写得很好,不少读者在中文版出版前勤勤恳恳地打印出开源译本来学习。
数学方面,《深度学习》的第2—4章非常详细地解释了深度学习中所需的线性代数、概率分布、数值计算等数学知识,值得认真研读。
深度学习2-4章目录
“荐书”是新智元的一个专题栏目,下回你想看到哪个领域的书籍推荐?你对这个栏目有什么建议?请留言告诉我们!
【号外】新智元正在进行新一轮招聘,飞往智能宇宙的最美飞船,还有N个座位
点击阅读原文可查看职位详情,期待你的加入~