We introduce mlOSP, a computational template for Machine Learning for Optimal Stopping Problems. The template is implemented in the R statistical environment and publicly available via a GitHub repository. mlOSP presents a unified numerical implementation of Regression Monte Carlo (RMC) approaches to optimal stopping, providing a state-of-the-art, open-source, reproducible and transparent platform. Highlighting its modular nature, we present multiple novel variants of RMC algorithms, especially in terms of constructing simulation designs for training the regressors, as well as in terms of machine learning regression modules. At the same time, mlOSP nests most of the existing RMC schemes, allowing for a consistent and verifiable benchmarking of extant algorithms. The article contains extensive R code snippets and figures, and serves the dual role of presenting new RMC features and as a vignette to the underlying software package.
翻译:我们引入 mLOSP, 这是最佳停止问题机器学习的计算模板。 模板在 R 统计环境中实施, 并通过 GitHub 仓库公开提供 。 mlOSP 展示了回归蒙特卡洛(RMC) 最佳停止方法的统一数字实施, 提供了一个最先进的、 开放的、 可复制的和透明的平台 。 突出其模块性质, 我们展示了多种新型的 RMC 算法变式, 特别是用于培训递减者的模拟设计, 以及机器学习回归模块 。 与此同时, mLOSP 嵌套了大多数现有的 RMC 方案, 从而允许以一致和可核查的方式设定活期算法基准 。 文章包含广泛的 R 代码片和图, 并起到双重作用, 展示新的 RMC 功能, 以及作为基础软件包的 vignette 。