CMU大神博士生Brandon Amos,马上就要毕业了。博士期间,他在可微优化机器学习建模方向,发表了ICLR 一篇,ICML 三篇,NeurIPS 三篇,分析了可微优化机器学习建模的很多问题。近日,他将自己的博士论文也开放了出来,系统的讲述了可微优化机器学习建模的方方面面。

博士论文简介

我们提出了两种基于优化建模的基本方法:

  1. OptNet体系结构,将优化问题作为单个层集成到更大的端到端可训练深度网络中,2)引入凸神经网络(ICNN)结构,使基于深度能量和结构化预测模型的推理和学习更加容易。

然后,我们将展示如何使用OptNet方法,1)将无模型和基于模型的强化学习与可微最优控制相结合,2)针对top-k学习问题,我们展示了如何将cvxpy领域特定的语言转换为可微优化层,从而实现本文方法的快速原型化。

成为VIP会员查看完整内容
59

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
介绍高维超参数调整 - 优化ML模型的最佳实践
AI研习社
7+阅读 · 2019年4月17日
已删除
将门创投
3+阅读 · 2019年1月29日
本周NLP、CV、机器学习论文精选推荐
PaperWeekly
8+阅读 · 2018年12月21日
【机器学习】机器学习:未来十年研究热点
产业智能官
16+阅读 · 2018年11月4日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
微信扫码咨询专知VIP会员