报告摘要: 构建统计机器学习方法进行图上预测是很多应用的基础问题,例如知识图谱的半监督节点分类和链接预测。传统的统计关联学习方法和近年来发展起来的图神经网络都对这类问题进行了广泛的研究。在这次演讲中,将介绍结合这两个领域的优势来进行图预测和推理所做的努力。以及结合条件随机域和semi-supervised节点的神经网络分类(图马尔可夫神经网络,ICML 19)和最近的研究在结合马尔可夫逻辑网络和知识图谱嵌入(概率逻辑神经网络)的推理。

在这次报告中,作者将介绍今年的ICML2019论文(GMNN: Graph Markov Neural Networks)。研究了关系数据中的半监督对象分类问题,这是关系数据建模中的一个基本问题。这个问题在统计相关学习(如关联马尔科夫网络)和图神经网络(如图卷积网络)的文献中得到了广泛的研究。统计相关学习方法可以通过条件随机域对对象标签的依赖关系进行有效的建模,实现集体分类,而图神经网络则通过端到端训练来学习有效的对象表示,实现分类。在这篇论文中,他们提出了结合这两个领域的优势的图马尔可夫神经网络(GMNN)。GMNN利用条件随机场对目标标签的联合分布进行建模,利用变分EM算法对其进行有效训练。 在E-step中,一个图神经网络学习有效的对象表示来近似对象标签的后验分布。 在M -步骤中,使用另一个图神经网络对局部标签依赖关系进行建模 。在目标分类、链路分类和无监督节点表示学习等方面的实验表明,该算法取得了较好的效果。

嘉宾介绍: 唐建博士自2017年12月起担任Mila(魁北克AI研究所)和HEC Montreal的助理教授。他是加拿大CIFAR第一批人工智能主席(CIFAR AI Research Chair)。他的研究方向是深度图表示学习,在知识图谱、药物发现和推荐系统等领域有着广泛的应用。他是密歇根大学和卡内基梅隆大学的研究员。他在北京大学获得博士学位,并在密歇根大学做了两年的访问学者。他在微软亚洲研究院做了两年的研究员。他在图表示学习(如LINE、LargeVis和RotatE)方面的工作得到了广泛的认可。他获得了ICML ' 14的最佳论文奖和WWW ' 16的最佳论文提名。个人主页

报告部分纲要:

  • 图结构数据
  • 关联预测与推理
  • 统计关联学习
  • 图表示学习
  • 知识图谱
  • 马尔科夫逻辑网络
成为VIP会员查看完整内容
76

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
非凸优化与统计学,89页ppt,普林斯顿Yuxin Chen博士
专知会员服务
102+阅读 · 2020年6月28日
图神经网络推理,27页ppt精炼讲解
专知会员服务
115+阅读 · 2020年4月24日
WSDM 2020教程《深度贝叶斯数据挖掘》,附257页PPT下载
专知会员服务
156+阅读 · 2020年2月7日
赛尔推荐 | 第12期
哈工大SCIR
4+阅读 · 2018年5月2日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
微信扫码咨询专知VIP会员