对于长尾目标检测任务来说,线性分类器中不同类别对应的参数向量的模值呈现一个极度不均衡的分布。这种分类器参数模值的分布不均会产生病态的分类边界(下图(a)),使得分类器参数模值较小的类别有接近于零的精度。余弦分类器可以避免由于分类器参数模值分布不均导致的病态的分类边界,但是其分类边界位于两个类别对应分类器参数向量的角分线上(下图(b)),没有考虑到类别的特性。
直觉上说,样本丰富度比较小的类别在分类空间中应该占据较小的区域。为了使网络为尾部类别学习到一个更加紧凑和本质的特征表示,我们提出了一种类别感知的角度间隔损失(Category-Aware Angular Margin Loss,C2AM Loss),通过加入与类别相关的自适应的角度间隔来对不同类别间的分类边界进行调整。具体的公式如式(1)(2)所示。
该方法对比基线方法有显著的性能提升(4.9%~5.2% APm),并且在LVIS数据集上超越了当前的长尾目标检测算法,实现了同期的最好性能。
图. 不同条件下的分类边界示意图
作者:Tong Wang, Yousong Zhu, Yingying Chen, Chaoyang Zhao, Bin Yu, Jinqiao Wang, Ming Tang