Emerging reconfigurable datacenters allow to dynamically adjust the network topology in a demand-aware manner. These datacenters rely on optical switches which can be reconfigured to provide direct connectivity between racks, in the form of edge-disjoint matchings. While state-of-the-art optical switches in principle support microsecond reconfigurations, the demand-aware topology optimization constitutes a bottleneck. This paper proposes a dynamic algorithms approach to improve the performance of reconfigurable datacenter networks, by supporting faster reactions to changes in the traffic demand. This approach leverages the temporal locality of traffic patterns in order to update the interconnecting matchings incrementally, rather than recomputing them from scratch. In particular, we present six (batch-)dynamic algorithms and compare them to static ones. We conduct an extensive empirical evaluation on 176 synthetic and 39 real-world traces, and find that dynamic algorithms can both significantly improve the running time and reduce the number of changes to the configuration, especially in networks with high temporal locality, while retaining matching weight.
翻译:正在出现的可重新配置的数据中心能够以需求觉醒的方式动态调整网络地形。 这些数据中心依赖于光学开关,这些开关可以重新配置,以便以边缘脱节匹配的形式在机架之间提供直接连接。 虽然在原则上最先进的光学开关支持微秒重组,但需求觉醒的地形优化是一个瓶颈。 本文提出一种动态算法方法,通过支持对交通需求变化的更快反应,改进可重新配置的数据中心网络的性能。 这种方法利用交通模式的时间位置来不断更新相互连接的匹配, 而不是从零开始进行重新连接。 特别是, 我们提出六种( 批次) 动态算法, 并将其与静态算法进行比较。 我们对176种合成的和39种真实世界的痕迹进行广泛的实证评估, 发现动态算法既能显著改善运行时间,也能减少配置变化的次数, 特别是在高时空位置的网络上, 同时保持相应的重量。