Knowledge Graph (KG) inference is the vital technique to address the natural incompleteness of KGs. The existing KG inference approaches can be classified into rule learning-based and KG embedding-based models. However, these approaches cannot well balance accuracy, generalization, interpretability and efficiency, simultaneously. Besides, these models always rely on pure triples and neglect additional information. Therefore, both KG embedding (KGE) and rule learning KG inference approaches face challenges due to the sparse entities and the limited semantics. We propose a novel and effective closed-loop KG inference framework EngineKGI operating similarly as an engine based on these observations. EngineKGI combines KGE and rule learning to complement each other in a closed-loop pattern while taking advantage of semantics in paths and concepts. KGE module exploits paths to enhance the semantic association between entities and introduces rules for interpretability. A novel rule pruning mechanism is proposed in the rule learning module by leveraging paths as initial candidate rules and employing KG embeddings together with concepts for extracting more high-quality rules. Experimental results on four real-world datasets show that our model outperforms other baselines on link prediction tasks, demonstrating the effectiveness and superiority of our model on KG inference in a joint logic and data-driven fashion with a closed-loop mechanism.
翻译:知识图( KG) 推论是解决KGs自然不完全性的关键技术。 现有的 KG 推论方法可以分为基于规则的学习和基于KG的嵌入模型。 但是,这些方法不能同时在准确性、 概括性、 可解释性和效率之间保持平衡。 此外, 这些模型总是依靠纯粹的三重和忽略更多的信息。 因此, KG 嵌入( KGe) 和规则学习 KG 推论方法都面临因分散的实体和有限的语义学而带来的挑战。 我们提议以这些观测为基础,建立一个新型和有效的封闭式 KGG 推论框架,作为类似引擎运行。 引擎KEngKGI将KGE和规则结合起来,在封闭式滚动模式模式模式模式模式中相互补充,同时利用路径和概念上的语义学。 KGG模块利用路径加强实体之间的语义联系,并引入解释性规则规则规则。 我们提出了一个新的规则调整机制, 将KGIG 嵌入式框架与概念一起运行, 提取更高质量的规则。 实验性G 在四个现实世界数据模型中展示了我们的数据驱动模型, 的模型, 展示了我们的数据模型, 在四个世界的模型中展示了我们的数据模型模型中展示了我们的数据流流流动的模型中,, 展示了我们的数据流流流动的模型中显示了我们的数据流出其他的模型。