Many supervised machine learning tasks, such as future state prediction in dynamical systems, require precise modeling of a forecast's uncertainty. The Multiple Hypotheses Prediction (MHP) approach addresses this problem by providing several hypotheses that represent possible outcomes. Unfortunately, with the common $l_2$ loss function, these hypotheses do not preserve the data distribution's characteristics. We propose an alternative loss for distribution preserving MHP and review relevant theorems supporting our claims. Furthermore, we empirically show that our approach yields more representative hypotheses on a synthetic and a real-world motion prediction data set. The outputs of the proposed method can directly be used in sampling-based Monte-Carlo methods.
翻译:许多受监督的机器学习任务,如动态系统中的未来状态预测,要求对预测的不确定性进行精确的模型化。多重假设预测(MHP)方法通过提供代表可能结果的若干假设来解决这个问题。不幸的是,由于通用的损失函数为$2美元,这些假设并不保留数据分布的特性。我们提出另一种损失,供分配保留MHP,并审查支持我们索赔的有关理论。此外,我们从经验上表明,我们的方法在合成和真实世界运动预测数据集上产生了更具代表性的假设。拟议方法的产出可以直接用于基于抽样的蒙特卡洛方法。