This work develops a multiphase thermomechanical model of porous silica aerogel and implements an uncertainty analysis framework consisting of the Sobol methods for global sensitivity analyses and Bayesian inference using a set of experimental data of silica aerogel. A notable feature of this work is implementing a new noise model within the Bayesian inversion to account for data uncertainty and modeling error. The hyper-parameters in the likelihood balance data misfit and prior contribution to the parameter posteriors and prevent their biased estimation. The results indicate that the uncertainty in solid conductivity and elasticity are the most influential parameters affecting the model output variance. Also, the Bayesian inference shows that despite the microstructural randomness in the thermal measurements, the model captures the data with 2% error. However, the model is inadequate in simulating the stress-strain measurements resulting in significant uncertainty in the computational prediction of a building insulation component.
翻译:这项工作的一个显著特点是,在贝叶斯转换过程中采用了一个新的噪音模型,以核算数据的不确定性和建模错误。在可能的平衡数据中,超参数参数数与先前对参数子外表的贡献不相符,并防止其偏差估计。结果显示,固体传导性和弹性的不确定性是影响模型输出差异的最有影响力的参数。此外,贝叶斯推论显示,尽管热测量中存在微结构随机性,但该模型以2%误差来捕捉数据。然而,该模型不足以模拟压力压强测量,导致建筑隔热部件的计算预测存在重大不确定性。