This work develops a multiphase thermomechanical model of porous silica aerogel and implements an uncertainty analysis framework consisting of the Sobol methods for global sensitivity analyses and Bayesian inference using a set of experimental data of silica aerogel. A notable feature of this work is implementing a new noise model within the Bayesian inversion to account for data uncertainty and modeling error. The hyper-parameters in the likelihood balance data misfit and prior contribution to the parameter posteriors and prevent their biased estimation. The results indicate that the uncertainty in solid conductivity and elasticity are the most influential parameters affecting the model output variance. Also, the Bayesian inference shows that despite the microstructural randomness in the thermal measurements, the model captures the data with 2% error. However, the model is inadequate in simulating the stress-strain measurements resulting in significant uncertainty in the computational prediction of a building insulation component.


翻译:这项工作的一个显著特点是,在贝叶斯转换过程中采用了一个新的噪音模型,以核算数据的不确定性和建模错误。在可能的平衡数据中,超参数参数数与先前对参数子外表的贡献不相符,并防止其偏差估计。结果显示,固体传导性和弹性的不确定性是影响模型输出差异的最有影响力的参数。此外,贝叶斯推论显示,尽管热测量中存在微结构随机性,但该模型以2%误差来捕捉数据。然而,该模型不足以模拟压力压强测量,导致建筑隔热部件的计算预测存在重大不确定性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月27日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员