Originality criteria are frequently used to compare assets and, in particular, to assess the validity of intellectual property (IP) rights such as copyright and design rights. In this work, the originality of an asset is formulated as a function of the distances between this asset and its comparands, using concepts of maximum entropy and surprisal analysis. Namely, the originality function is defined according to the surprisal associated with a given asset. Creative assets can be justifiably compared to particles that repel each other via an electrostatic-like pair potential. This allows a very simple, suitably bounded formula to be obtained, in which the originality of an asset writes as the ratio of a reference energy to an interaction energy imparted to that asset. In particular, the originality of an asset can be expressed as a ratio of two average distances, i.e., the harmonic mean of the distances from this asset to its comparands divided by the harmonic mean of the distances between the sole comparands. Accordingly, the originality of objects such as IP assets can be simply estimated based on distances computed thanks to unsupervised machine learning techniques or other distance computation algorithms. Application is made to various types of assets, including emojis, typeface designs, paintings, and novel titles.


翻译:原始性标准经常用来比较资产,特别是用来评估版权和设计权等知识产权(IP)权利的有效性。在这项工作中,一项资产的原始性是根据该资产与其比较器之间的距离函数的函数,使用最大英特罗比和超常分析的概念。也就是说,原始性功能是根据与特定资产相关的超常性来界定的。创造性资产可以合理地与通过电子相似的对子潜力相互反射的粒子相比较。这样就可以获得一种非常简单、适当约束的公式,其中资产的原始性作为该资产与其对应器所传输的交互能量的参考能量比率来写出。特别是,资产的原始性可以以两种平均距离的比率表示,即从该资产到其相对资产之间的距离的偏差值的相近性平均值。因此,知识产权资产的原始性可以仅仅根据距离来计算,包括不超异的图像类型、应用机能模型、其他类型的算法或新式机器类型算法。

0
下载
关闭预览

相关内容

ACM SIGACCESS Conference on Computers and Accessibility是为残疾人和老年人提供与计算机相关的设计、评估、使用和教育研究的首要论坛。我们欢迎提交原始的高质量的有关计算和可访问性的主题。今年,ASSETS首次将其范围扩大到包括关于计算机无障碍教育相关主题的原创高质量研究。官网链接:http://assets19.sigaccess.org/
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
45+阅读 · 2019年12月20日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
26+阅读 · 2018年8月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年8月6日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
45+阅读 · 2019年12月20日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
26+阅读 · 2018年8月19日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员