Hyperdimensional computing (HDC) is an emerging learning paradigm that computes with high dimensional binary vectors. It is attractive because of its energy efficiency and low latency, especially on emerging hardware -- but HDC suffers from low model accuracy, with little theoretical understanding of what limits its performance. We propose a new theoretical analysis of the limits of HDC via a consideration of what similarity matrices can be "expressed" by binary vectors, and we show how the limits of HDC can be approached using random Fourier features (RFF). We extend our analysis to the more general class of vector symbolic architectures (VSA), which compute with high-dimensional vectors (hypervectors) that are not necessarily binary. We propose a new class of VSAs, finite group VSAs, which surpass the limits of HDC. Using representation theory, we characterize which similarity matrices can be "expressed" by finite group VSA hypervectors, and we show how these VSAs can be constructed. Experimental results show that our RFF method and group VSA can both outperform the state-of-the-art HDC model by up to 7.6\% while maintaining hardware efficiency.
翻译:超元计算(HDC)是一个新兴的学习模式,它用高维二进矢量进行计算。它具有吸引力,因为它的能效和低延度,特别是在新兴硬件方面。它具有吸引力,因为它的能效和低延度,但HDC的模型精度低,对它的性能没有多少理论性能限制。我们建议对HDC的极限进行新的理论分析,方法是考虑二进制矢量“表达”的相似矩阵,我们展示了如何使用随机的 Fourier 特性(RFF)来对待HDC的极限。我们将我们的分析扩大到更普通的矢量符号结构(VSA),这些矢量符号结构与不一定是二进制的高维量矢量矢量(HDC)相容。我们建议了一个新的VSA的有限类,即VSA组。我们使用代表理论来描述哪些相似的基质矩阵可以“表达”,我们展示了这些VSA的构造方式。实验结果表明,我们的RFF方法和VSA组的图象性结构都超越了7.6的国基数。