Augmenting the balanced residue number system moduli-set $\{m_1=2^n,m_2=2^n-1,m_3=2^n+1\}$, with the co-prime modulo $m_4=2^{2n}+1$, increases the dynamic range (DR) by around 70%. The Mersenne form of product $m_2 m_3 m_4=2^{4n}-1$, in the moduli-set $\{m_1,m_2,m_3,m_4\}$, leads to a very efficient reverse convertor, based on the New Chinese remainder theorem. However, the double bit-width of the m_4 residue channel is counter-productive and jeopardizes the speed balance in $\{m_1,m_2,m_3\}$. Therefore, we decompose $m_4$ to two complex-number n-bit moduli $2^n\pm\sqrt{-1}$, which preserves the DR and the co-primality across the augmented moduli set. The required forward modulo-$(2^{2n}+1)$ to moduli-$(2^n\pm\sqrt{-1}) $conversion, and the reverse are immediate and cost-free. The proposed unified moduli-$(2^n\pm\sqrt{-1})$ adder and multiplier, are tested and synthesized using Spartan 7S100 FPGA. The 6-bit look-up tables (LUT), therein, promote the LUT realizations of adders and multipliers, for $n=5$, where the DR equals $2^{25}-2^5$. However, the undertaken experiments show that to cover all the 32-bit numbers, the power-of-two channel $m_1$ can be as wide as 12 bits with no harm to the speed balance across the five moduli. The results also show that the moduli-$(2^5\pm\sqrt{-1})$ add and multiply operations are advantageous vs. moduli-$(2^5\pm1)$ in speed, cost, and energy measures and collectively better than those of modulo-$(2^{10}+1)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
24+阅读 · 2024年3月25日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
16+阅读 · 2021年12月7日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
33+阅读 · 2021年3月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月23日
Arxiv
0+阅读 · 2024年5月22日
VIP会员
相关VIP内容
WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
24+阅读 · 2024年3月25日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
16+阅读 · 2021年12月7日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
33+阅读 · 2021年3月7日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员