In their article "Coupling at a distance HDG and BEM", Cockburn, Sayas and Solano proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using a computational domain for the HDG discretization whose boundary did not coincide with the coupling interface. In their article, the authors provided extensive numerical evidence for convergence, but the proof of convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.
翻译:Cockburn、Sayas和Solano在文章“在距离HDG和BEM的距离上结合”中提议对可混合不连续的Galerkin法和边界要素法进行迭接,以解决外部Drichlet问题,数字方法的新颖之处在于为HDG的离散使用一个计算域,其边界与联结接口不相吻合。作者在文章中提供了大量的数字证据,以求汇,但当时的趋同证据和错误分析仍然难以找到。在本篇文章中,我们通过证明算法的松散和为数字解决办法提供先验错误估计来填补差距。