This article grew out of the theoretical part of my Master's thesis at the Faculty of Mathematics and Information Science at Ruprecht-Karls-Universit\"at Heidelberg under the supervision of PD Dr. Andreas Ott. Following the work of G. Carlsson and A. Zomorodian on the theory of multidimensional persistence in 2007 and 2009, the main goal of this article is to give a complete classification and parameterization for the algebraic objects corresponding to the homology of a multifiltered simplicial complex. As in the work of G. Carlsson and A. Zomorodian, this classification and parameterization result is then used to show that it is only possible to obtain a discrete and complete invariant for these algebraic objects in the case of one-dimensional persistence, and that it is impossible to obtain the same in dimensions greater than one.
翻译:本文是我在PD Andreas Ott博士监督下,在海德堡Ruprecht-Karls-Universit\"大学数学和信息科学学院的数学和信息科学系的理论部分。 在G.Carlsson和A.Zomorodian于2007年和2009年就多维持久性理论开展工作之后,本文章的主要目标是对与多过滤的简化综合体同义的代数物体进行完整的分类和参数化。与G.Carlsson和A.Zomorodian的工作一样,这一分类和参数化结果被用来表明,在一维持久性的情况下,这些代数物体只能获得离散和完整的变异性,而且不可能在大于一维的尺寸上获得相同的等值。