This paper describes the BLCU-ICALL system used in the SemEval-2022 Task 1 Comparing Dictionaries and Word Embeddings, the Definition Modeling subtrack, achieving 1st on Italian, 2nd on Spanish and Russian, and 3rd on English and French. We propose a transformer-based multitasking framework to explore the task. The framework integrates multiple embedding architectures through the cross-attention mechanism, and captures the structure of glosses through a masking language model objective. Additionally, we also investigate a simple but effective model ensembling strategy to further improve the robustness. The evaluation results show the effectiveness of our solution. We release our code at: https://github.com/blcuicall/SemEval2022-Task1-DM.
翻译:本文介绍了SemEval-2022任务1比较字典和文字嵌入式、定义模型子轨、意大利一一、西班牙和俄罗斯二、英法三等所使用的BLCU-CL化学L系统。我们提议了一个基于变压器的多任务框架来探讨这项任务。框架通过交叉注意机制整合多个嵌入结构,并通过隐形语言模型目标捕捉光条结构。此外,我们还调查了一个简单而有效的组合模式,以进一步提高稳健性。评价结果显示了我们解决方案的有效性。我们发布了我们的代码,网址是:https://github.com/blculicall/SemEval2022-Task1-DM。