The use of deep neural networks in electromyogram (EMG) based prostheses control provides a promising alternative to the hand-crafted features by automatically learning muscle activation patterns from the EMG signals. Meanwhile, the use of raw EMG signals as input to convolution neural networks (CNN) offers a simple, fast, and ideal scheme for effective control of prostheses. Therefore, this study investigates the relationship between window length and overlap, which may influence the generation of robust raw EMG 2-dimensional (2D) signals for application in CNN. And a rule of thumb for a proper combination of these parameters that could guarantee optimal network performance was derived. Moreover, we investigate the relationship between the CNN receptive window size and the raw EMG signal size. Experimental results show that the performance of the CNN increases with the increase in overlap within the generated signals, with the highest improvement of 9.49% accuracy and 23.33% F1-score realized when the overlap is 75% of the window length. Similarly, the network performance increases with the increase in receptive window (kernel) size. Findings from this study suggest that a combination of 75% overlap in 2D EMG signals and wider network kernels may provide ideal motor intents classification for adequate EMG-CNN based prostheses control scheme.


翻译:在基于电传图的假肢控制中使用深神经网络提供了一种充满希望的替代方法,通过自动学习环境管理小组信号中的肌肉激活模式,可以取代手工制作的特征。与此同时,使用原始的环境管理小组信号作为进化神经网络(CNN)的投入,为有效控制假肢提供了一个简单、快速和理想的计划。因此,本研究报告调查了窗口长度和重叠之间的关系,这可能影响到在CNN中生成强大的原始二维(2D)信号。此外,还得出了这些参数的适当组合的拇指规则,保证了最佳网络性能。此外,我们调查了CNN接受式窗口大小与原始EMG信号大小之间的关系。实验结果表明,CNN的性能随着生成信号的重叠增加而增加,其精确度提高了9.49%,当窗口长度为75%时实现了23.33%的F1核心。同样,网络性能随着接收式窗口(内内核)大小的增加而增加。本研究的结果表明,基于IMG2号模型的75%的硬性硬性硬性硬性能组合,可能提供基于IMG2号模型的理想网络的硬性组合。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员